Maximum Power Point Tracking of Photovoltaic System Based on Fuzzy Control to Increase There Solar Energy Efficiency

Author(s):  
Ahmed Hafaifa ◽  
Kaid Imed ◽  
Mouloud Guemana ◽  
Abudura Salam
2012 ◽  
Vol 512-515 ◽  
pp. 202-207
Author(s):  
Qiang Xu ◽  
Xiao Chun Zhang ◽  
Kai Chun Ren ◽  
Xing Qi Zhang ◽  
Xiao Jun Liu

This paper analyzes the characteristics of solar cells, and establishes the simulation model from its mathematical expressions which can factually reflects the change of solar cells’ parameters. The commonly used method of maximum power point tracking technologies is introduced. A PV system’s most maximum power is simulated by using the fuzzy control method. Simulation results show that the system can work at a stable maximum power point rapidly.


2019 ◽  
Vol 142 (1) ◽  
Author(s):  
Hafsa Abouadane ◽  
Abderrahim Fakkar ◽  
Benyounes Oukarfi

The photovoltaic panel is characterized by a unique point called the maximum power point (MPP) where the panel produces its maximum power. However, this point is highly influenced by the weather conditions and the fluctuation of load which drop the efficiency of the photovoltaic system. Therefore, the insertion of the maximum power point tracking (MPPT) is compulsory to track the maximum power of the panel. The approach adopted in this paper is based on combining the strengths of two maximum power point tracking techniques. As a result, an efficient maximum power point tracking method is obtained. It leads to an accurate determination of the MPP during different situations of climatic conditions and load. To validate the effectiveness of the proposed MPPT method, it has been simulated in matlab/simulink under different conditions.


2015 ◽  
Vol 787 ◽  
pp. 227-232 ◽  
Author(s):  
L.A. Arun Shravan ◽  
D. Ebenezer

In recent years there has been a growing attention towards use of solar energy. Advantages of photovoltaic (PV) systems employed for harnessing solar energy are reduction of greenhouse gas emission, low maintenance costs, fewer limitations with regard to site of installation and absence of mechanical noise arising from moving parts. However, PV systems suffer from relatively low conversion efficiency. Therefore, maximum power point tracking (MPPT) for the solar array is essential in a PV system. The nonlinear behaviour of PV systems as well as variations of the maximum power point with solar irradiance level and temperature complicates the tracking of the maximum power point. This paper reviews various MPPT methods based on three categories: offline, online and hybrid methods. Design of a PV system in a encoding environment has also been reviewed here. Furthermore, different MPPT methods are discussed in terms of the dynamic response of the PV system to variations in temperature and irradiance, attainable efficiency, and implementation considerations.


Sign in / Sign up

Export Citation Format

Share Document