scholarly journals Database-Driven High-Throughput Calculations and Machine Learning Models for Materials Design

Author(s):  
Rickard Armiento
Author(s):  
Noé Sturm ◽  
Jiangming Sun ◽  
Yves Vandriessche ◽  
Andreas Mayr ◽  
Günter Klambauer ◽  
...  

<div>This article describes an application of high-throughput fingerprints (HTSFP) built upon industrial data accumulated over the years. </div><div>The fingerprint was used to build machine learning models (multi-task deep learning + SVM) for compound activity predictions towards a panel of 131 targets. </div><div>Quality of the predictions and the scaffold hopping potential of the HTSFP were systematically compared to traditional structural descriptors ECFP. </div><div><br></div>


F1000Research ◽  
2017 ◽  
Vol 4 ◽  
pp. 1091 ◽  
Author(s):  
Sean Ekins ◽  
Joel S. Freundlich ◽  
Alex M. Clark ◽  
Manu Anantpadma ◽  
Robert A. Davey ◽  
...  

The search for small molecule inhibitors of Ebola virus (EBOV) has led to several high throughput screens over the past 3 years. These have identified a range of FDA-approved active pharmaceutical ingredients (APIs) with anti-EBOV activity in vitro and several of which are also active in a mouse infection model. There are millions of additional commercially-available molecules that could be screened for potential activities as anti-EBOV compounds. One way to prioritize compounds for testing is to generate computational models based on the high throughput screening data and then virtually screen compound libraries. In the current study, we have generated Bayesian machine learning models with viral pseudotype entry assay and the EBOV replication assay data. We have validated the models internally and externally. We have also used these models to computationally score the MicroSource library of drugs to select those likely to be potential inhibitors. Three of the highest scoring molecules that were not in the model training sets, quinacrine, pyronaridine and tilorone, were tested in vitro and had EC50 values of 350, 420 and 230 nM, respectively. Pyronaridine is a component of a combination therapy for malaria that was recently approved by the European Medicines Agency, which may make it more readily accessible for clinical testing. Like other known antimalarial drugs active against EBOV, it shares the 4-aminoquinoline scaffold. Tilorone, is an investigational antiviral agent that has shown a broad array of biological activities including cell growth inhibition in cancer cells, antifibrotic properties, α7 nicotinic receptor agonist activity, radioprotective activity and activation of hypoxia inducible factor-1. Quinacrine is an antimalarial but also has use as an anthelmintic. Our results suggest data sets with less than 1,000 molecules can produce validated machine learning models that can in turn be utilized to identify novel EBOV inhibitors in vitro.


F1000Research ◽  
2015 ◽  
Vol 4 ◽  
pp. 1091 ◽  
Author(s):  
Sean Ekins ◽  
Joel S. Freundlich ◽  
Alex M. Clark ◽  
Manu Anantpadma ◽  
Robert A. Davey ◽  
...  

The search for small molecule inhibitors of Ebola virus (EBOV) has led to several high throughput screens over the past 3 years. These have identified a range of FDA-approved active pharmaceutical ingredients (APIs) with anti-EBOV activity in vitro and several of which are also active in a mouse infection model. There are millions of additional commercially-available molecules that could be screened for potential activities as anti-EBOV compounds. One way to prioritize compounds for testing is to generate computational models based on the high throughput screening data and then virtually screen compound libraries. In the current study, we have generated Bayesian machine learning models with viral pseudotype entry assay and the EBOV replication assay data. We have validated the models internally and externally. We have also used these models to computationally score the MicroSource library of drugs to select those likely to be potential inhibitors. Three of the highest scoring molecules that were not in the model training sets, quinacrine, pyronaridine and tilorone, were tested in vitro and had EC50 values of 350, 420 and 230 nM, respectively. Pyronaridine is a component of a combination therapy for malaria that was recently approved by the European Medicines Agency, which may make it more readily accessible for clinical testing. Like other known antimalarial drugs active against EBOV, it shares the 4-aminoquinoline scaffold. Tilorone, is an investigational antiviral agent that has shown a broad array of biological activities including cell growth inhibition in cancer cells, antifibrotic properties, α7 nicotinic receptor agonist activity, radioprotective activity and activation of hypoxia inducible factor-1. Quinacrine is an antimalarial but also has use as an anthelmintic. Our results suggest data sets with less than 1,000 molecules can produce validated machine learning models that can in turn be utilized to identify novel EBOV inhibitors in vitro.


F1000Research ◽  
2016 ◽  
Vol 4 ◽  
pp. 1091 ◽  
Author(s):  
Sean Ekins ◽  
Joel S. Freundlich ◽  
Alex M. Clark ◽  
Manu Anantpadma ◽  
Robert A. Davey ◽  
...  

The search for small molecule inhibitors of Ebola virus (EBOV) has led to several high throughput screens over the past 3 years. These have identified a range of FDA-approved active pharmaceutical ingredients (APIs) with anti-EBOV activity in vitro and several of which are also active in a mouse infection model. There are millions of additional commercially-available molecules that could be screened for potential activities as anti-EBOV compounds. One way to prioritize compounds for testing is to generate computational models based on the high throughput screening data and then virtually screen compound libraries. In the current study, we have generated Bayesian machine learning models with viral pseudotype entry assay and the EBOV replication assay data. We have validated the models internally and externally. We have also used these models to computationally score the MicroSource library of drugs to select those likely to be potential inhibitors. Three of the highest scoring molecules that were not in the model training sets, quinacrine, pyronaridine and tilorone, were tested in vitro and had EC50 values of 350, 420 and 230 nM, respectively. Pyronaridine is a component of a combination therapy for malaria that was recently approved by the European Medicines Agency, which may make it more readily accessible for clinical testing. Like other known antimalarial drugs active against EBOV, it shares the 4-aminoquinoline scaffold. Tilorone, is an investigational antiviral agent that has shown a broad array of biological activities including cell growth inhibition in cancer cells, antifibrotic properties, α7 nicotinic receptor agonist activity, radioprotective activity and activation of hypoxia inducible factor-1. Quinacrine is an antimalarial but also has use as an anthelmintic. Our results suggest data sets with less than 1,000 molecules can produce validated machine learning models that can in turn be utilized to identify novel EBOV inhibitors in vitro.


Author(s):  
Noé Sturm ◽  
Jiangming Sun ◽  
Yves Vandriessche ◽  
Andreas Mayr ◽  
Günter Klambauer ◽  
...  

<div>This article describes an application of high-throughput fingerprints (HTSFP) built upon industrial data accumulated over the years. </div><div>The fingerprint was used to build machine learning models (multi-task deep learning + SVM) for compound activity predictions towards a panel of 131 targets. </div><div>Quality of the predictions and the scaffold hopping potential of the HTSFP were systematically compared to traditional structural descriptors ECFP. </div><div><br></div>


2020 ◽  
Vol 2 (1) ◽  
pp. 3-6
Author(s):  
Eric Holloway

Imagination Sampling is the usage of a person as an oracle for generating or improving machine learning models. Previous work demonstrated a general system for using Imagination Sampling for obtaining multibox models. Here, the possibility of importing such models as the starting point for further automatic enhancement is explored.


Sign in / Sign up

Export Citation Format

Share Document