Compound Libraries
Recently Published Documents





2022 ◽  
Vol 23 (2) ◽  
pp. 811
Maiia E. Bragina ◽  
Antoine Daina ◽  
Marta A. S. Perez ◽  
Olivier Michielin ◽  
Vincent Zoete

Hit finding, scaffold hopping, and structure–activity relationship studies are important tasks in rational drug discovery. Implementation of these tasks strongly depends on the availability of compounds similar to a known bioactive molecule. SwissSimilarity is a web tool for low-to-high-throughput virtual screening of multiple chemical libraries to find molecules similar to a compound of interest. According to the similarity principle, the output list of molecules generated by SwissSimilarity is expected to be enriched in compounds that are likely to share common protein targets with the query molecule and that can, therefore, be acquired and tested experimentally in priority. Compound libraries available for screening using SwissSimilarity include approved drugs, clinical candidates, known bioactive molecules, commercially available and synthetically accessible compounds. The first version of SwissSimilarity launched in 2015 made use of various 2D and 3D molecular descriptors, including path-based FP2 fingerprints and ElectroShape vectors. However, during the last few years, new fingerprinting methods for molecular description have been developed or have become popular. Here we would like to announce the launch of the new version of the SwissSimilarity web tool, which features additional 2D and 3D methods for estimation of molecular similarity: extended-connectivity, MinHash, 2D pharmacophore, extended reduced graph, and extended 3D fingerprints. Moreover, it is now possible to screen for molecular structures having the same scaffold as the query compound. Additionally, all compound libraries available for screening in SwissSimilarity have been updated, and several new ones have been added to the list. Finally, the interface of the website has been comprehensively rebuilt to provide a better user experience. The new version of SwissSimilarity is freely available starting from December 2021.

2022 ◽  
Vol 18 ◽  
Meenu Aggarwal ◽  
Raman Singh ◽  
Priyanka Ahlawat ◽  
Kuldeep Singh

Abstract: Natural products have stimulated chemists owing to their abundant structural diversity and complexity. Indeed, natural products have performed an essential role, particularly in the cure of cancerous and infectious diseases, thereby posing medicinal researchers with a scope of unexplored chemotypes for the innovation of new drugs. Fusion of chemical derivatization and combinatorial synthesis forms the basis of the concept of chemo diversification of plants. Diverse libraries of natural product analogs are constructed through existing biological and chemical approaches using unique schemes to expand natural product frameworks. This review aims to present several approaches employed to offer innovative opportunities to synthesize NP-inspired compound libraries. Reactive molecular fragments present in most natural products are chemically converted to chemically engineered extracts (CEEs) or semisynthetic compounds constituting distinct libraries. Bio-guided isolation for natural products required vital tools like reverse phase chromatography and bioautographic assays. Different established strategies from DTS, BIOS, CtD, FOS, FBDD to Late-stage diversification facilitate the expansion of molecules with physicochemical properties. In particular, fragment-like natural products with novel skeletons may be used as preliminary points for chemical biology and medicinal chemistry programs with great capacity. In this review, we sum up how NPs have proven fruitful for the novel methodologies responsible for the diversification of complex natural products; thereby, it is worthy of going over the upcoming integration of natural products with combinatorial chemistry.

2021 ◽  
Vol 24 (02) ◽  
Veranja Karunaratne

Small molecules has been a main concern in the pharmaceutical industry for as long as they have existed. Enormous libraries of compounds have been collected and they in turn nurture drug discovery research. For example, big pharma, has in their compound libraries ranging from 500,000 to several million. Examining the drugs in the market, it is clear from where most are arriving: natural origin; out of the 1,328 new chemical entities approved as drugs between 1981 and 2016, only 359 were purely of synthetic origin. In the list of remaining ones, 326 were “biologics”, and 94 were vaccines. Importantly, 549 were from natural origin or arose motivated from natural compounds. Furthermore, anticancer compounds arising during the same period (1981–2014), only 23 were purely synthetic (Newman and Cragg, 2016). Natural origin can count for three categories: unaltered natural products; distinct mixture of natural products and natural product derivatives isolated from plants or other living organisms such as fungi, sponges, lichens, or microorganisms; and products modified through application of medicinal chemistry. There are many examples covering a wide spectrum of diseases: anticancer drugs such as docetaxel (Taxotere™), paclitaxel (Taxol™), vinblastine, podophyllotoxin (Condylin™), or etoposide; steroidal hormones such as progesterone, norgestrel, or cortisone; cardiac glycosides such as digitoxigenin; antibiotics like penicillin, streptomycin, and cephalosporins.

2021 ◽  
Kuang-Yu Chen ◽  
Tim Krischuns ◽  
Laura Ortega Varga ◽  
Emna Harigua-Souiai ◽  
Sylvain Paisant ◽  

Effective drugs against SARS-CoV-2 are urgently needed to treat severe cases of infection and for prophylactic use. The main viral protease (nsp5 or 3CLpro) represents an attractive and possibly broad-spectrum target for drug development as it is essential to the virus life cycle and highly conserved among betacoronaviruses. Sensitive and efficient high-throughput screening methods are key for drug discovery. Here we report the development of a gain-of-signal, highly sensitive cell-based luciferase assay to monitor SARS-CoV-2 nsp5 activity and show that it is suitable for high-throughput screening of compounds in a 384-well format. A benefit of miniaturisation and automation is that screening can be performed in parallel on a wild-type and a catalytically inactive nsp5, which improves the selectivity of the assay. We performed molecular docking-based screening on a set of 14,468 compounds from an in-house chemical database, selected 359 candidate nsp5 inhibitors and tested them experimentally. We identified four molecules, including the broad-spectrum antiviral merimepodib/VX-497, which show anti-nsp5 activity and inhibit SARS-CoV-2 replication in A549-ACE2 cells with IC50 values in the 4-21 micromolar range. The here described assay will allow the screening of large-scale compound libraries for SARS-CoV-2 nsp5 inhibitors. Moreover, we provide evidence that this assay can be adapted to other coronaviruses and viruses which rely on a viral protease.

2021 ◽  
Vol 3 (12) ◽  
Kali Iyer ◽  
Kaddy Camara ◽  
Martin Daniel-Ivad ◽  
Nicole Revie ◽  
Jennifer Lou ◽  

The rise in drug resistance amongst pathogenic fungi, paired with the limited arsenal of antifungals available is an imminent threat to our medical system. To address this, we screened two distinct compound libraries to identify novel strategies to expand the antifungal armamentarium. The first collection wasthe RIKEN Natural Product Depository (NPDepo), which was screened for antifungal activity against four major human fungal pathogens: Candida albicans, Candida glabrata, Candida auris, and Cryptococcus neoformans. Through a prioritization pipeline, one compound, NPD6433, emerged as having broad-spectrum antifungal activity and minimal mammalian cytotoxicity. Chemical-genetic and biochemical assays demonstrated that NPD6433 inhibits the essential fungal enzyme fatty acid synthase 1 (Fas1). Treatment with NPD6433 inhibited various virulence traits in C. neoformans and C. auris, and rescued mammalian cell growth in a co-culture model with C. auris. The second compound library screened was adiversity-oriented collectionfrom Boston University. This chemical screen was focused on identifying novel molecules that enhance the activity of the widely deployed antifungal, fluconazole, against C. auris. Through this endeavour, we discovered a potent compound that enhanced fluconazole efficacy against C. auris through increasing azole intracellular accumulation. This activity was dependent on expression of the multidrug transporter geneCDR1, suggesting that this compound targets efflux mechanisms. Furthermore, this molecule significantly reduced fungal burden alone and in combination with fluconazole in a murine model of C. auris disseminated infection. Overall, this work identifies novel compounds with bioactivity against fungal pathogens, revealing important biology, and paving the way for the critical development of therapeutic strategies.

2021 ◽  
Changzhi Li ◽  
Hongjuan Zhou ◽  
Lingling Guo ◽  
Dehuan Xie ◽  
Huiping He ◽  

The outbreak of SARS-CoV-2 continues to pose a serious threat to human health and social and economic stability. In this study, we established an anti-coronavirus drug screening platform based on the Homogeneous Time Resolved Fluorescence (HTRF) technology and the interaction between the coronavirus S protein and its host receptor ACE2. This platform is a rapid, sensitive, specific, and high throughput system. With this platform, we screened two compound libraries of 2,864 molecules and identified three potential anti-coronavirus compounds: tannic acid (TA), TS-1276 (anthraquinone), and TS-984 (9-Methoxycanthin-6-one). Our in vitro validation experiments indicated that TS-984 strongly inhibits the interaction of the coronavirus S-protein and the human cell ACE2 receptor. This data suggests that TS-984 is a potent blocker of the interaction between the S-protein and ACE2, which might have the potential to be developed into an effective anti-coronavirus drug.

2021 ◽  
Vol 8 ◽  
Homayon John Arabshahi ◽  
Tomaž Trobec ◽  
Valentin Foulon ◽  
Claire Hellio ◽  
Robert Frangež ◽  

The search for effective yet environmentally friendly strategies to prevent marine biofouling is hampered by the large taxonomic diversity amongst fouling organisms and a lack of well-defined conserved molecular targets. The acetylcholinesterase enzyme catalyses the breakdown of the neurotransmitter acetylcholine, and several natural antifouling allelochemicals have been reported to display acetylcholinesterase inhibitory activity. Our study is focussed on establishing if acetylcholinesterase can be used as a well-defined molecular target to accelerate discovery and development of novel antifoulants via sequential high-throughput in silico screening, in vitro enzymatic studies of identified compound libraries, and in vivo assessment of the most promising lead compounds. Using this approach, we identified potent cholinesterase inhibitors with inhibitory concentrations down to 3 μM from a 10,000 compound library. The most potent inhibitors were screened against five microfouling marine bacteria and marine microalgae and the macrofouling tunicate Ciona savignyi. No activity was seen against the microfoulers but a potent novel inhibitor of tunicate settlement and metamorphosis was discovered. Although only one of the identified active cholinesterase inhibitors displayed antifouling activity suggesting the link between cholinesterase inhibition and antifouling is limited to certain compound classes, the study highlights how in silico screening employed regularly for drug discovery can also facilitate discovery of antifouling leads.

Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7338
Pei-Tzu Huang ◽  
Sirle Saul ◽  
Shirit Einav ◽  
Christopher R. M. Asquith

Emerging viral infections, including those caused by dengue virus (DENV) and Venezuelan Equine Encephalitis virus (VEEV), pose a significant global health challenge. Here, we report the preparation and screening of a series of 4-anilinoquinoline libraries targeting DENV and VEEV. This effort generated a series of lead compounds, each occupying a distinct chemical space, including 3-((6-bromoquinolin-4-yl)amino)phenol (12), 6-bromo-N-(5-fluoro-1H-indazol-6-yl)quinolin-4-amine (50) and 6-((6-bromoquinolin-4-yl)amino)isoindolin-1-one (52), with EC50 values of 0.63–0.69 µM for DENV infection. These compound libraries demonstrated very limited toxicity with CC50 values greater than 10 µM in almost all cases. Additionally, the lead compounds were screened for activity against VEEV and demonstrated activity in the low single-digit micromolar range, with 50 and 52 demonstrating EC50s of 2.3 µM and 3.6 µM, respectively. The promising results presented here highlight the potential to further refine this series in order to develop a clinical compound against DENV, VEEV, and potentially other emerging viral threats.

2021 ◽  
Vol 17 ◽  
pp. 2787-2794
Alla I Vaskevych ◽  
Nataliia O Savinchuk ◽  
Ruslan I Vaskevych ◽  
Eduard B Rusanov ◽  
Oleksandr O Grygorenko ◽  

A regioselective method for the synthesis of 1-(hydroxymethyl)-2,3-dihydropyrrolo[1,2-a]quinazolin-5(1H)-ones – close structural analogs of naturally occurring vasicinone alkaloids – is described. The procedure is based on PIFA-initiated oxidative 5-exo-trig cyclization of 2-(3-butenyl)quinazolin-4(3Н)-ones, in turn prepared by thermal cyclocondensation of the corresponding 2-(pent-4-enamido)benzamides. The products obtained have a good natural product likeness (NPL) score and therefore can be useful for the design of natural product-like compound libraries.

Sign in / Sign up

Export Citation Format

Share Document