An Effective Feature Extraction Based Classification Model Using Canonical Particle Swarm Optimization with Convolutional Neural Network for Glaucoma Diagnosis System

Author(s):  
Narmatha Venugopal ◽  
Kamarasan Mari
2021 ◽  
Vol 11 (3) ◽  
pp. 803-809
Author(s):  
J. Jayanthi ◽  
T. Jayasankar ◽  
N. Krishnaraj ◽  
N. B. Prakash ◽  
A. Sagai Francis Britto ◽  
...  

Diabetic retinopathy (DR), a major cause of vision loss and it raises a major issue among diabetes people. DR considerably affect the financial condition of the society specially in medicinal sector. Once proper treatment is given to the DR patients, roughly 90% of patients can be saved from vision loss. So, it is needed to develop a DR classification model for classifying the stages and severity level of DR to offer better treatment. This article develops a novel Particle Swarm Optimization (PSO) algorithm based Convolutional Neural Network (CNN) Model called PSO-CNN model to detect and classify DR from the color fundus images. The proposed PSO-CNN model comprises three stages namely preprocessing, feature extraction and classification. Initially, preprocessing is carried out as a noise removal process to discard the noise present in the input image. Then, feature extraction process using PSO-CNN model is applied to extract the useful subset of features. Finally, the filtered features are given as input to the decision tree (DT) model for classifying the set of DR images. The simulation of the PSO-CNN model takes place using a benchmark DR database and the experimental outcome stated that the PSO-CNN model has outperformed all the compared methods in a significant way. The outcome of the simulation process indicated that the PSO-CNN model has offered maximum results.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Ashraf Ullah ◽  
Nadeem Javaid ◽  
Adamu Sani Yahaya ◽  
Tanzeela Sultana ◽  
Fahad Ahmad Al-Zahrani ◽  
...  

This paper presents a hybrid model, named as hybrid deep neural network, which combines convolutional neural network, particle swarm optimization, and gated recurrent unit, termed as convolutional neural network-particle swarm optimization-gated recurrent unit model. The major aims of the model are to perform accurate electricity theft detection and to overcome the issues in the existing models. The issues include overfitting and inability of the models to handle imbalanced data. For this purpose, the electricity consumption data of smart meters is taken from state grid corporation of China. An electric utility company gathers the data from the intelligent antenna-based smart meters installed at the consumers’ end. The dataset contains real-time data with missing values and outliers. Therefore, it is first preprocessed to get the refined data followed by feature engineering for selection and extraction of the finest features from the dataset using convolutional neural network. The classification of electricity consumers is performed by dividing them into honest and fraudulent classes using the proposed particle swarm optimization-gated recurrent unit model. The proposed model is evaluated by performing simulations in terms of several performance measures that include accuracy, area under the curve, F 1 -score, recall, and precision. The comparison between the proposed hybrid deep neural network and benchmark models is also performed. The benchmark models include gated recurrent unit, long short term memory, logistic regression, support vector machine, and genetic algorithm-based gated recurrent unit. The results indicate that the proposed hybrid deep neural network model is more efficient in handling class imbalanced issues and performing electricity theft detection. The robustness, accuracy, and generalization of the model are also analyzed in the proposed work.


Sign in / Sign up

Export Citation Format

Share Document