A Semi-supervised Classification Method for Hyperspectral Images by Triple Classifiers with Data Editing and Deep Learning

Author(s):  
Guoming Zhang ◽  
Junshu Wang ◽  
Ge Shi ◽  
Jie Zhang ◽  
Wanchun Dou
2021 ◽  
Vol 14 (1) ◽  
pp. 171
Author(s):  
Qingyan Wang ◽  
Meng Chen ◽  
Junping Zhang ◽  
Shouqiang Kang ◽  
Yujing Wang

Hyperspectral image (HSI) data classification often faces the problem of the scarcity of labeled samples, which is considered to be one of the major challenges in the field of remote sensing. Although active deep networks have been successfully applied in semi-supervised classification tasks to address this problem, their performance inevitably meets the bottleneck due to the limitation of labeling cost. To address the aforementioned issue, this paper proposes a semi-supervised classification method for hyperspectral images that improves active deep learning. Specifically, the proposed model introduces the random multi-graph algorithm and replaces the expert mark in active learning with the anchor graph algorithm, which can label a considerable amount of unlabeled data precisely and automatically. In this way, a large number of pseudo-labeling samples would be added to the training subsets such that the model could be fine-tuned and the generalization performance could be improved without extra efforts for data manual labeling. Experiments based on three standard HSIs demonstrate that the proposed model can get better performance than other conventional methods, and they also outperform other studied algorithms in the case of a small training set.


2020 ◽  
Vol 12 (3) ◽  
pp. 536
Author(s):  
Bingqing Niu ◽  
Jinhui Lan ◽  
Yang Shao ◽  
Hui Zhang

The convolutional neural network (CNN) has been gradually applied to the hyperspectral images (HSIs) classification, but the lack of training samples caused by the difficulty of HSIs sample marking and ignoring of correlation between spatial and spectral information seriously restrict the HSIs classification accuracy. In an attempt to solve these problems, this paper proposes a dual-branch extraction and classification method under limited samples of hyperspectral images based on deep learning (DBECM). At first, a sample augmentation method based on local and global constraints in this model is designed to augment the limited training samples and balance the number of different class samples. Then spatial-spectral features are simultaneously extracted by the dual-branch spatial-spectral feature extraction method, which improves the utilization of HSIs data information. Finally, the extracted spatial-spectral feature fusion and classification are integrated into a unified network. The experimental results of two typical datasets show that the DBECM proposed in this paper has certain competitive advantages in classification accuracy compared with other public HSIs classification methods, especially in the Indian pines dataset. The parameters of the overall accuracy (OA), average accuracy (AA), and Kappa of the method proposed in this paper are at least 4.7%, 5.7%, and 5% higher than the existing methods.


2021 ◽  
Vol 61 ◽  
pp. 101252
Author(s):  
César Capinha ◽  
Ana Ceia-Hasse ◽  
Andrew M. Kramer ◽  
Christiaan Meijer

2013 ◽  
Vol 51 (2) ◽  
pp. 803-817 ◽  
Author(s):  
Jun Bai ◽  
Shiming Xiang ◽  
Chunhong Pan

2021 ◽  
Author(s):  
Wenfeng Li ◽  
Yuewu Yang ◽  
Liwei Zhang ◽  
Xiaochen Xu ◽  
Haobo Ma ◽  
...  

2019 ◽  
Vol 94 ◽  
pp. 524-535 ◽  
Author(s):  
Ningbo Liu ◽  
Yanan Xu ◽  
Yonghua Tian ◽  
Hongwei Ma ◽  
Shuliang Wen

2018 ◽  
Vol 10 (11) ◽  
pp. 1827 ◽  
Author(s):  
Ahram Song ◽  
Jaewan Choi ◽  
Youkyung Han ◽  
Yongil Kim

Hyperspectral change detection (CD) can be effectively performed using deep-learning networks. Although these approaches require qualified training samples, it is difficult to obtain ground-truth data in the real world. Preserving spatial information during training is difficult due to structural limitations. To solve such problems, our study proposed a novel CD method for hyperspectral images (HSIs), including sample generation and a deep-learning network, called the recurrent three-dimensional (3D) fully convolutional network (Re3FCN), which merged the advantages of a 3D fully convolutional network (FCN) and a convolutional long short-term memory (ConvLSTM). Principal component analysis (PCA) and the spectral correlation angle (SCA) were used to generate training samples with high probabilities of being changed or unchanged. The strategy assisted in training fewer samples of representative feature expression. The Re3FCN was mainly comprised of spectral–spatial and temporal modules. Particularly, a spectral–spatial module with a 3D convolutional layer extracts the spectral–spatial features from the HSIs simultaneously, whilst a temporal module with ConvLSTM records and analyzes the multi-temporal HSI change information. The study first proposed a simple and effective method to generate samples for network training. This method can be applied effectively to cases with no training samples. Re3FCN can perform end-to-end detection for binary and multiple changes. Moreover, Re3FCN can receive multi-temporal HSIs directly as input without learning the characteristics of multiple changes. Finally, the network could extract joint spectral–spatial–temporal features and it preserved the spatial structure during the learning process through the fully convolutional structure. This study was the first to use a 3D FCN and a ConvLSTM for the remote-sensing CD. To demonstrate the effectiveness of the proposed CD method, we performed binary and multi-class CD experiments. Results revealed that the Re3FCN outperformed the other conventional methods, such as change vector analysis, iteratively reweighted multivariate alteration detection, PCA-SCA, FCN, and the combination of 2D convolutional layers-fully connected LSTM.


Author(s):  
Stojan Trajanovski ◽  
Caifeng Shan ◽  
Pim J.C. Weijtmans ◽  
Susan G. Brouwer de Koning ◽  
Theo J. M. Ruers

Author(s):  
Artem Nikonorov ◽  
Maksim Petrov ◽  
Sergey Bibikov ◽  
Viktoria Kutikova ◽  
Pavel Yakimov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document