Complex interpolation and the Riesz–Thorin theorem

Author(s):  
Richard Beals ◽  
Roderick S. C. Wong
2020 ◽  
Vol 23 (4) ◽  
pp. 1125-1140
Author(s):  
Andriy Lopushansky ◽  
Oleh Lopushansky ◽  
Anna Szpila

AbstractAn fractional abstract Cauchy problem generated by a sectorial operator is investigated. An inequality of coercivity type for its solution with respect to a complex interpolation scale generated by a sectorial operator with the same parameters is established. An application to differential parabolic initial-boundary value problems in bounded domains with a fractional time derivative is shown.


2013 ◽  
Vol 95 (2) ◽  
pp. 158-168
Author(s):  
H.-Q. BUI ◽  
R. S. LAUGESEN

AbstractEvery bounded linear operator that maps ${H}^{1} $ to ${L}^{1} $ and ${L}^{2} $ to ${L}^{2} $ is bounded from ${L}^{p} $ to ${L}^{p} $ for each $p\in (1, 2)$, by a famous interpolation result of Fefferman and Stein. We prove ${L}^{p} $-norm bounds that grow like $O(1/ (p- 1))$ as $p\downarrow 1$. This growth rate is optimal, and improves significantly on the previously known exponential bound $O({2}^{1/ (p- 1)} )$. For $p\in (2, \infty )$, we prove explicit ${L}^{p} $ estimates on each bounded linear operator mapping ${L}^{\infty } $ to bounded mean oscillation ($\mathit{BMO}$) and ${L}^{2} $ to ${L}^{2} $. This $\mathit{BMO}$ interpolation result implies the ${H}^{1} $ result above, by duality. In addition, we obtain stronger results by working with dyadic ${H}^{1} $ and dyadic $\mathit{BMO}$. The proofs proceed by complex interpolation, after we develop an optimal dyadic ‘good lambda’ inequality for the dyadic $\sharp $-maximal operator.


2013 ◽  
Vol 318 ◽  
pp. 100-107
Author(s):  
Zhen Shen ◽  
Biao Wang ◽  
Hui Yang ◽  
Yun Zheng

Six kinds of interpolation methods, including projection-shape function method, three-dimensional linear interpolation method, optimal interpolation method, constant volume transformation method and so on, were adoped in the study of interpolation accuracy. From the point of view about the characterization of matching condition of two different grids and interpolation function, the infuencing factor on the interpolation accuracy was studied. The results revealed that different interpolation methods had different interpolation accuracy. The projection-shape function interpolation method had the best effect and the more complex interpolation function had lower accuracy. In many cases, the matching condition of two grids had much greater impact on the interpolation accuracy than the method itself. The error of interpolation method is inevitable, but the error caused by the grid quality could be reduced through efforts.


2015 ◽  
Vol 276 (2) ◽  
pp. 287-307 ◽  
Author(s):  
Félix Cabello Sánchez ◽  
Jesús Castillo ◽  
Nigel Kalton

2000 ◽  
Vol 87 (2) ◽  
pp. 200
Author(s):  
Frédérique Watbled

Let $X$ be a Banach space compatible with its antidual $\overline{X^*}$, where $\overline{X^*}$ stands for the vector space $X^*$ where the multiplication by a scalar is replaced by the multiplication $\lambda \odot x^* = \overline{\lambda} x^*$. Let $H$ be a Hilbert space intermediate between $X$ and $\overline{X^*}$ with a scalar product compatible with the duality $(X,X^*)$, and such that $X \cap \overline{X^*}$ is dense in $H$. Let $F$ denote the closure of $X \cap \overline{X^*}$ in $\overline{X^*}$ and suppose $X \cap \overline{X^*}$ is dense in $X$. Let $K$ denote the natural map which sends $H$ into the dual of $X \cap F$ and for every Banach space $A$ which contains $X \cap F$ densely let $A'$ be the realization of the dual space of $A$ inside the dual of $X \cap F$. We show that if $\vert \langle K^{-1}a, K^{-1}b \rangle_H \vert \leq \parallel a \parallel_{X'} \parallel b \parallel_{F'}$ whenever $a$ and $b$ are both in $X' \cap F'$ then $(X, \overline{X^*})_{\frac12} = H$ with equality of norms. In particular this equality holds true if $X$ embeds in $H$ or $H$ embeds densely in $X$. As other particular cases we mention spaces $X$ with a $1$-unconditional basis and Köthe function spaces on $\Omega$ intermediate between $L^1(\Omega)$ and $L^\infty(\Omega)$.


Sign in / Sign up

Export Citation Format

Share Document