scholarly journals Complex interpolation of a Banach space with its dual

2000 ◽  
Vol 87 (2) ◽  
pp. 200
Author(s):  
Frédérique Watbled

Let $X$ be a Banach space compatible with its antidual $\overline{X^*}$, where $\overline{X^*}$ stands for the vector space $X^*$ where the multiplication by a scalar is replaced by the multiplication $\lambda \odot x^* = \overline{\lambda} x^*$. Let $H$ be a Hilbert space intermediate between $X$ and $\overline{X^*}$ with a scalar product compatible with the duality $(X,X^*)$, and such that $X \cap \overline{X^*}$ is dense in $H$. Let $F$ denote the closure of $X \cap \overline{X^*}$ in $\overline{X^*}$ and suppose $X \cap \overline{X^*}$ is dense in $X$. Let $K$ denote the natural map which sends $H$ into the dual of $X \cap F$ and for every Banach space $A$ which contains $X \cap F$ densely let $A'$ be the realization of the dual space of $A$ inside the dual of $X \cap F$. We show that if $\vert \langle K^{-1}a, K^{-1}b \rangle_H \vert \leq \parallel a \parallel_{X'} \parallel b \parallel_{F'}$ whenever $a$ and $b$ are both in $X' \cap F'$ then $(X, \overline{X^*})_{\frac12} = H$ with equality of norms. In particular this equality holds true if $X$ embeds in $H$ or $H$ embeds densely in $X$. As other particular cases we mention spaces $X$ with a $1$-unconditional basis and Köthe function spaces on $\Omega$ intermediate between $L^1(\Omega)$ and $L^\infty(\Omega)$.

2010 ◽  
Vol 88 (2) ◽  
pp. 205-230 ◽  
Author(s):  
CHRISTOPH KRIEGLER ◽  
CHRISTIAN LE MERDY

AbstractLet K be any compact set. The C*-algebra C(K) is nuclear and any bounded homomorphism from C(K) into B(H), the algebra of all bounded operators on some Hilbert space H, is automatically completely bounded. We prove extensions of these results to the Banach space setting, using the key concept ofR-boundedness. Then we apply these results to operators with a uniformly bounded H∞-calculus, as well as to unconditionality on Lp. We show that any unconditional basis on Lp ‘is’ an unconditional basis on L2 after an appropriate change of density.


Author(s):  
Yurii V. Brezhnev

We deduce the Born rule from a purely statistical take on quantum theory within minimalistic math-setup. No use is required of quantum postulates. One exploits only rudimentary quantum mathematics—a linear, not Hilbert’, vector space—and empirical notion of the Statistical Length of a state. Its statistical nature comes from the lab micro-events (detector-clicks) being formalized into the C -coefficients of quantum superpositions. We also comment that not only has the use not been made of quantum axioms (scalar-product, operators, interpretations , etc.), but that the involving thereof would be, in a sense, inconsistent when deriving the rule. In point of fact, the quadratic character of the statistical length, and even not (the ‘physics’ of) Born’s formula, represents a first step in constructing the mathematical structure we name the Hilbert space of quantum states.


Author(s):  
Muhammad Ryan Sanusi ◽  
Endang Rusyaman ◽  
Diah Chaerani

Hilbert space is a complete inner product space, meaning that each Cauchy sequence converges to a point in that space. One of the vector spaces that will be examined as the inner product space is p-summable space. The inner product space is a subset of vector spaces that have special properties that must be fulfilled. One way to prove vector space is the inner product space is to use parallelogram equality theorems. After it is known that the vector space is the inner product space, the completeness of the space will be proven using the dual space. The space used is the p-summable space, data that can be changed in a sequence form will be usable in this study. The results of this study will be useful as another application in determining a Hilbert space by using a method that is different from the definition. The analysis used will show comparison of the speed of completion accuracy will be a benchmark in this study, so that will be a new reference in determining a space is Hilbert space.


Author(s):  
Bernd Carl

SynopsisIn this paper we determine the asymptotic behaviour of entropy numbers of embedding maps between Besov sequence spaces and Besov function spaces. The results extend those of M. Š. Birman, M. Z. Solomjak and H. Triebel originally formulated in the language of ε-entropy. It turns out that the characterization of embedding maps between Besov spaces by entropy numbers can be reduced to the characterization of certain diagonal operators by their entropy numbers.Finally, the entropy numbers are applied to the study of eigenvalues of operators acting on a Banach space which admit a factorization through embedding maps between Besov spaces.The statements of this paper are obtained by results recently proved elsewhere by the author.


1990 ◽  
Vol 32 (3) ◽  
pp. 273-276 ◽  
Author(s):  
Muneo Chō

In this paper we shall examine the relationship between the numerical ranges and the spectra for semi-normal operators on uniformly smooth spaces.Let X be a complex Banach space. We denote by X* the dual space of X and by B(X) the space of all bounded linear operators on X. A linear functional F on B(X) is called state if ∥F∥ = F(I) = 1. When x ε X with ∥x∥ = 1, we denoteD(x) = {f ε X*:∥f∥ = f(x) = l}.


2021 ◽  
Vol 8 (1) ◽  
pp. 48-59
Author(s):  
Fernanda Botelho ◽  
Richard J. Fleming

Abstract Given Banach spaces X and Y, we ask about the dual space of the 𝒧(X, Y). This paper surveys results on tensor products of Banach spaces with the main objective of describing the dual of spaces of bounded operators. In several cases and under a variety of assumptions on X and Y, the answer can best be given as the projective tensor product of X ** and Y *.


1985 ◽  
Vol 37 (5) ◽  
pp. 908-920
Author(s):  
A. D. Andrew

1. In this paper, we investigate the ranges of projections on certain Banach spaces of functions defined on a diadic tree. The notion of a “tree-like” Banach space is due to James 4], who used it to construct the separable space JT which has nonseparable dual and yet does not contain l1. This idea has proved useful. In [3], Hagler constructed a hereditarily c0 tree space, HT, and Schechtman [6] constructed, for each 1 ≦ p ≦ ∞, a reflexive Banach space, STp with a 1-unconditional basis which does not contain lp yet is uniformly isomorphic to for each n.In [1] we showed that if U is a bounded linear operator on JT, then there exists a subspace W ⊂ JT, isomorphic to JT such that either U or (1 — U) acts as an isomorphism on W and UW or (1 — U)W is complemented in JT. In this paper, we establish this result for the Hagler and Schechtman tree spaces.


1970 ◽  
Vol 17 (2) ◽  
pp. 121-125 ◽  
Author(s):  
C. W. McArthur

It is known (13, p. 92) that each closed normal cone in a weakly sequentially complete locally convex space is regular and fully regular. Part of the main theorem of this paper shows that a certain amount of weak sequential completeness is necessary in order that each closed normal cone be regular. Specifically, it is shown that each closed normal cone in a Fréchet space is regular if and only if each closed subspace with an unconditional basis is weakly sequentially complete. If E is a strongly separable conjugate of a Banach space it is shown that each closed normal cone in E is fully regular. If E is a Banach space with an unconditional basis it is shown that each closed normal cone in E is fully regular if and only if E is the conjugate of a Banach space.


2005 ◽  
Vol 71 (1) ◽  
pp. 107-111
Author(s):  
Fathi B. Saidi

In this paper we adopt the notion of orthogonality in Banach spaces introduced by the author in [6]. There, the author showed that in any two-dimensional subspace F of E, every nonzero element admits at most one orthogonal direction. The problem of existence of such orthogonal direction was not addressed before. Our main purpose in this paper is the investigation of this problem in the case where E is a real Banach space. As a result we obtain a characterisation of Hilbert spaces stating that, if in every two-dimensional subspace F of E every nonzero element admits an orthogonal direction, then E is isometric to a Hilbert space. We conclude by presenting some open problems.


Sign in / Sign up

Export Citation Format

Share Document