P1 Receptors

2021 ◽  
pp. 1211-1211
Keyword(s):  
2000 ◽  
Vol 279 (3) ◽  
pp. C658-C669 ◽  
Author(s):  
Bernardo Morales ◽  
Nelson Barrera ◽  
Pablo Uribe ◽  
Claudio Mora ◽  
Manuel Villalón

The presence of ATP and adenosine receptors and their role in controlling ciliary activity in oviductal ciliated cells was studied by measuring the ciliary beat frequency (CBF) in oviductal tissue cultures. ATP, adenosine, and related compounds increased the CBF in a dose-dependent manner. We established that P2 receptors of subtype 2Y2 and P1 receptors of subtype A2a mediated the responses to ATP and adenosine, respectively. We found evidence to suggest that stimulation of ciliary activity by ATP requires d- myo-inositol 1,4,5-trisphosphate [Ins(1,4,5) P 3] metabolism, intracellular Ca2+ mobilization, and protein kinase C activation. On the other hand, the adenosine effect is mediated by activation of a Gs protein-dependent pathway that enhances cAMP intracellular levels. To study the interaction between P2 and P1 receptors, cells were stimulated simultaneously with both agonists. We observed a synergistic increase of the CBF even at agonist concentrations (100 nM) that did not produce a significant response when added separately to the culture. Furthermore, a blocker of the cAMP pathway produced a reduction of the ATP response, whereas a blocker of the Ins(1,4,5) P 3 pathway also produced an inhibition of the adenosine response. Our evidence demonstrates that both ATP and adenosine receptors are present in a single ciliated cell and that a mechanism of cross talk could operate in the transduction pathways to control ciliary activity.


2011 ◽  
Vol 175 (3) ◽  
pp. 434-441 ◽  
Author(s):  
Petr Kolenko ◽  
Daniel Rozbeský ◽  
Ondřej Vaněk ◽  
Vladimír Kopecký ◽  
Kateřina Hofbauerová ◽  
...  

Author(s):  
A. Lorenzen ◽  
U. Schwabe
Keyword(s):  

2019 ◽  
Vol 25 (26) ◽  
pp. 2792-2807 ◽  
Author(s):  
Pobitra Borah ◽  
Satyendra Deka ◽  
Raghu Prasad Mailavaram ◽  
Pran Kishore Deb

Background: Adenosine mediates various physiological and pathological conditions by acting on its four P1 receptors (A1, A2A, A2B and A3 receptors). Omnipresence of P1 receptors and their activation, exert a wide range of biological activities. Thus, its modulation is implicated in various disorders like Parkinson’s disease, asthma, cardiovascular disorders, cancer etc. Hence these receptors have become an interesting target for the researchers to develop potential therapeutic agents. Number of molecules were designed and developed in the past few years and evaluated for their efficacy in various disease conditions. Objective: The main objective is to provide an overview of new chemical entities which have crossed preclinical studies and reached clinical trials stage following their current status and future prospective. Methods: In this review we discuss current status of the drug candidates which have undergone clinical trials and their prospects. Results: Many chemical entities targeting various subtypes of P1 receptors are patented; twenty of them have crossed preclinical studies and reached clinical trials stage. Two of them viz adenosine and regadenoson are approved by the Food and Drug Administration. Conclusion: This review is an attempt to highlight the current status, progress and probable future of P1 receptor ligands which are under clinical trials as promising novel therapeutic agents and the direction in which research should proceed with a view to come out with novel therapeutic agents.


1999 ◽  
Vol 57 (4) ◽  
pp. 355-364 ◽  
Author(s):  
Chiara Florio ◽  
Fabiana Frausin ◽  
Rodolfo Vertua ◽  
Rosa Maria Gaion

Sign in / Sign up

Export Citation Format

Share Document