nucleoside transporters
Recently Published Documents


TOTAL DOCUMENTS

305
(FIVE YEARS 38)

H-INDEX

44
(FIVE YEARS 2)

2021 ◽  
Vol 27 (40) ◽  
pp. 6844-6860
Author(s):  
Carly Jade Carter ◽  
Ahmed H Mekkawy ◽  
David L Morris

Author(s):  
Clara Boces-Pascual ◽  
Aida Mata-Ventosa ◽  
Mireia Martín-Satué ◽  
Loreto Boix ◽  
Meritxell Gironella ◽  
...  

AbstractHigh-affinity uptake of natural nucleosides as well as nucleoside derivatives used in anticancer therapies is mediated by human concentrative nucleoside transporters (hCNTs). hCNT1, the hCNT family member that specifically transports pyrimidines, is also a transceptor involved in tumor progression. In particular, oncogenesis appears to be associated with hCNT1 downregulation in some cancers, although the underlying mechanisms are largely unknown. Here, we sought to address changes in colorectal and pancreatic ductal adenocarcinoma—both of which are important digestive cancers—in the context of treatment with fluoropyrimidine derivatives. An analysis of cancer samples and matching non-tumoral adjacent tissues revealed downregulation of hCNT1 protein in both types of tumor. Further exploration of the putative regulation of hCNT1 by microRNAs (miRNAs), which are highly deregulated in these cancers, revealed a direct relationship between the oncomiRs miR-106a and miR-17 and the loss of hCNT1. Collectively, our findings provide the first demonstration that hCNT1 inhibition by these oncomiRs could contribute to chemoresistance to fluoropyrimidine-based treatments in colorectal and pancreatic cancer. Graphic abstract


2021 ◽  
pp. MOLPHARM-AR-2021-000333
Author(s):  
Siennah R. Miller ◽  
Meghan E. McGrath ◽  
Kimberley M. Zorn ◽  
Sean Ekins ◽  
Stephen H. Wright ◽  
...  

2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
James R. Hammond

Nucleoside transporters are divided into two families, the sodium-dependent, concentrative solute carrier family 28 (SLC28) and the equilibrative, solute carrier family 29 (SLC29). The endogenous substrates are typically nucleosides, although some family members can also transport nucleobases and organic cations [1].


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Detlev Boison

A multifunctional, ubiquitous molecule, adenosine acts at cell-surface G protein-coupled receptors, as well as numerous enzymes, including protein kinases and adenylyl cyclase. Extracellular adenosine is thought to be produced either by export or by metabolism, predominantly through ecto-5’-nucleotidase activity (also producing inorganic phosphate). It is inactivated either by extracellular metabolism via adenosine deaminase (also producing ammonia) or, following uptake by nucleoside transporters, via adenosine deaminase or adenosine kinase (requiring ATP as co-substrate). Intracellular adenosine may be produced by cytosolic 5’-nucleotidases or through S-adenosylhomocysteine hydrolase (also producing L-homocysteine).


2021 ◽  
Vol 9 (4) ◽  
Author(s):  
Siennah R. Miller ◽  
Joseph L. Jilek ◽  
Meghan E. McGrath ◽  
Raymond K. Hau ◽  
Erin Q. Jennings ◽  
...  

2021 ◽  
Vol 558 ◽  
pp. 120-125
Author(s):  
Taiki Yamamura ◽  
Katsuya Narumi ◽  
Tsukika Ohata ◽  
Hiroshi Satoh ◽  
Takao Mori ◽  
...  

2021 ◽  
Author(s):  
Maliha Zafar

Nucleosides and nucleoside analog drugs enter cells through nucleoside transporters, such as the human equilibrative nucleoside transporter 1 (hENT1). The regulation of nucleoside transporters is poorly understood. In this study, through fluorescence-activated cell sorting (FACS) analyses, confocal microscopy and radio-ligand binding assays, I show a decrease in hENT1 abundance at the plasma membrane (PM) in HEK cells treated in the presence of a bolus amount of cytidine (40μM) for 6 hours. Kinetic and transport assays indicate that the remaining hENT1 population at the PM has a higher Vmax and Km but there is no change in overall substrate uptake compared to untreated cells. I also show that cytidine pre-treatment leads to an increased cytotoxicity from gemcitabine (a nucleoside analog drug). These are the first data that show direct substrate dependent regulation of a nucleoside transporter by a mechanism that may involve increased recycling/internalization of the transporter.


2021 ◽  
Author(s):  
Maliha Zafar

Nucleosides and nucleoside analog drugs enter cells through nucleoside transporters, such as the human equilibrative nucleoside transporter 1 (hENT1). The regulation of nucleoside transporters is poorly understood. In this study, through fluorescence-activated cell sorting (FACS) analyses, confocal microscopy and radio-ligand binding assays, I show a decrease in hENT1 abundance at the plasma membrane (PM) in HEK cells treated in the presence of a bolus amount of cytidine (40μM) for 6 hours. Kinetic and transport assays indicate that the remaining hENT1 population at the PM has a higher Vmax and Km but there is no change in overall substrate uptake compared to untreated cells. I also show that cytidine pre-treatment leads to an increased cytotoxicity from gemcitabine (a nucleoside analog drug). These are the first data that show direct substrate dependent regulation of a nucleoside transporter by a mechanism that may involve increased recycling/internalization of the transporter.


Sign in / Sign up

Export Citation Format

Share Document