Exact Approaches to the Multi-agent Collective Construction Problem

Author(s):  
Edward Lam ◽  
Peter J. Stuckey ◽  
Sven Koenig ◽  
T. K. Satish Kumar
2010 ◽  
Vol 1 (2) ◽  
pp. 58-79 ◽  
Author(s):  
Yan Meng ◽  
Yaochu Jin

In this paper, a virtual swarm intelligence (VSI)-based algorithm is proposed to coordinate a distributed multi-robot system for a collective construction task. Three phases are involved in a construction task: search, detect, and carry. Initially, robots are randomly located within a bounded area and start random search for building blocks. Once the building blocks are detected, agents need to share the information with their local neighbors. A distributed virtual pheromone-trail (DVP) based model is proposed for local communication among agents. If multiple building blocks are detected in a local area, agents need to make decisions on which agent(s) should carry which block(s). To this end, a virtual particle swarm optimization (V-PSO)-based model is developed for multi-agent behavior coordination. Furthermore, a quorum sensing (QS)-based model is employed to balance the tradeoff between exploitation and exploration, so that an optimal overall performance can be achieved. Extensive simulation results on a collective construction task have demonstrated the efficiency and robustness of the proposed VSI-based framework.


Author(s):  
Yan Meng ◽  
Yaochu Jin

In this paper, a virtual swarm intelligence (VSI)-based algorithm is proposed to coordinate a distributed multi-robot system for a collective construction task. Three phases are involved in a construction task: search, detect, and carry. Initially, robots are randomly located within a bounded area and start random search for building blocks. Once the building blocks are detected, agents need to share the information with their local neighbors. A distributed virtual pheromone-trail (DVP) based model is proposed for local communication among agents. If multiple building blocks are detected in a local area, agents need to make decisions on which agent(s) should carry which block(s). To this end, a virtual particle swarm optimization (V-PSO)-based model is developed for multi-agent behavior coordination. Furthermore, a quorum sensing (QS)-based model is employed to balance the tradeoff between exploitation and exploration, so that an optimal overall performance can be achieved. Extensive simulation results on a collective construction task have demonstrated the efficiency and robustness of the proposed VSI-based framework.


Sign in / Sign up

Export Citation Format

Share Document