Energy Partitioning of Seismic Waves

Author(s):  
Kalachand Sain
2019 ◽  
Author(s):  
Emanuele Marchetti ◽  
Alec van Herwijnen ◽  
Marc Christen ◽  
Maria Cristina Silengo ◽  
Giulia Barfucci

Abstract. While flowing downhill, a snow avalanche radiates seismic waves in the ground and infrasonic waves in the atmosphere. Seismic energy is radiated by the dense basal layer flowing above the ground, while infrasound energy is likely radiated by the powder front. However, the mutual energy partitioning is not fully understood. We present infrasonic and seismic array data of a powder snow avalanche, that released on 5 February 2016, in the Dischma valley above Davos, Switzerland. A five element infrasound array and a seven element seismic array were deployed at short distance (


2011 ◽  
Vol 8 (1) ◽  
pp. 275-286
Author(s):  
R.G. Yakupov ◽  
D.M. Zaripov

The stress-deformed state of the underground main pipeline under the action of seismic waves of an earthquake is considered. The generalized functions of seismic impulses are constructed. The pipeline motion equations are solved with used Laplace transformation by the time. Tensions and deformations of the pipeline have been determined. A numerical example is reviewed. Diagrams of change of the tension depending on earthquake force are provided in earthquake-points.


Author(s):  
Satoshi Fujita ◽  
Keisuke Minagawa ◽  
Mitsuru Miyazaki ◽  
Go Tanaka ◽  
Toshio Omi ◽  
...  

This paper describes three-dimensional isolation performance of seismic isolation system using air bearings. Long period seismic waves having predominant period of from a few seconds to a few ten seconds have recently been observed in various earthquakes. Also resonances of high-rise buildings and sloshing of petroleum tanks in consequence of long period seismic waves have been reported. Therefore the isolation systems having very long natural period or no natural period are required. In a previous paper [1], we proposed an isolation system having no natural period by using air bearings. Additionally we have already reported an introduction of the system, and have investigated horizontal motion during earthquake in the previous paper. It was confirmed by horizontal vibration experiment and simulation in the previous paper that the proposed system had good performance of isolation. However vertical motion should be investigated, because vertical motion varies horizontal frictional force. Therefore this paper describes investigation regarding vertical motion of the proposed system by experiment. At first, a vertical excitation test of the system is carried out so as to investigate vertical dynamic property. Then a three-dimensional vibration test using seismic waves is carried out so as to investigate performance of isolation against three-dimensional seismic waves.


Sign in / Sign up

Export Citation Format

Share Document