earthquake force
Recently Published Documents


TOTAL DOCUMENTS

79
(FIVE YEARS 29)

H-INDEX

6
(FIVE YEARS 1)

Neutron ◽  
2022 ◽  
Vol 21 (2) ◽  
pp. 80-96
Author(s):  
Agus Fernando ◽  
Syahwandi ◽  
Resi Aseanto ◽  
Agung Sumarno

Abstract The modeled building structure is a regular building, with the number of levels being varied. The structural model is divided into 38-level portals. This research uses the help of the SAP2000 v21 program to facilitate the earthquake analysis process. The results of the study that will be compared are displacements between levels and base shear that occur due to earthquake forces. The results of the analysis have shown that static analysis produces greater results for the structural models compared to dynamic analysis. The difference in displacement between levels produced by the two methods in the three structural models is still included in the displacement limits between levels of permission required in SNI 1726-2012, so that the three models can still be analyzed by static analysis and dynamic analysis. Because the results of displacement and base shear in static analysis are greater than dynamic analysis, static analysis is safer if used for earthquake force loading in general structural calculations. Although in earthquake analysis, dynamic analysis is a more accurate analysis because the analysis process is closer to the actual situation.


2021 ◽  
Vol 933 (1) ◽  
pp. 012009
Author(s):  
M A Rahman ◽  
M Teguh ◽  
F Saleh

Abstract Multi-story buildings are designed to withstand lateral forces against earthquakes. There are several ways to strengthen multi-story building structures. One way is to add a dual system, namely the shear wall or the bracing systems. Shear walls and bracing techniques can resist earthquake forces in vertical and horizontal directions that occur in building structures. This study compares the results of the structural analysis to three structural models. The 10- story of the structural response used in the research includes the story drift, base shear, displacement, and structural behavior due to the earthquake force. Model 1 is a general structure without the shear wall and bracing systems, Model 2 is a structure completed with L-shear walls, and Model 3 is a structure installed with the X-bracing system. The analyses of three Models were carried out by SAP2000 software. The results show that the slightest interstory drift occurs in Model 2, namely 0.041 mm. The decrease in deviation value that arises in Model 2 is 12.6 mm, with 34.35%. In Model 1, the story drift exceeds the allowable limit, so that with such a model, it is not feasible. Therefore, it is necessary to add shear walls or a bracing system.


2021 ◽  
Vol 878 (1) ◽  
pp. 012053
Author(s):  
E Nehe ◽  
P Simanjuntak ◽  
S P Tampubolon

Abstract Currently, Bekasi City is developing into a residence for an urban, industrial center, and built apartments. One of them is the Urban Sky-Bekasi Apartment. This researched raises by an apartment as a case study to evaluate the performance of multi-story building structures as earthquake-resistant buildings. This researched conduct by add the original building height to 8 m (a basic height equals 102 m and a new height equals 110 m) to analyze whether the planning data made could still bear the same load with different heights and could still be categorized as earthquake-resistant buildings. From the results of the SAP-2000 output. The value of the basic static and dynamic shear forces in a 110 m building is always greater than a 102 m building in both the X and Y directions, this indicates that the taller a building is, the higher the design earthquake force used will be. The displacement in a 110 m building is always bigger than a 102 m building in both the X and Y directions. The weakest strength of the structure in a 110 m building is on the 29th floor in the X directions and Y directions, while the 102 m building is on the 26th floor in the X directions and 24 directions. It shows that with the addition of high SAP-2000 output data such as displacement, drift ratio, and other data after analysis shows that a 110 m building is categorized as an earthquake-resistant building according to SNI 1726-2012.


2021 ◽  
Vol 6 (2) ◽  
pp. 81-96
Author(s):  
Adan Kamarudin ◽  
Erizal

Analysis of structural strength to the conditions of the jetty Port Babo of Teluk Bintuni, West Papua is important to ensure the stability of the against external loads and forces. The purpose of this research is to analyse and evaluate the strength of structures, as well as assess the durability of jetty structures. Modeling using the SAP2000 program corresponds to as built drawing. The results of the calculation of the working load include dead loads, live loads, ship berth, ship mooring force, current force, wave force, and earthquake force. Energy due to ship collision loads and vessel berthing force can be reduced using a fender designed using rubber fenders seibu V300H. The results of the structural analysis show that the number of combined variants is sufficient up to the shape mode 12. The dynamic earthquake shear forces in the x and y directions are still smaller than the static shear forces, so it needs to be multiplied by a scale factor of 2,9. The deviation that occurs in the structure is still smaller than the allowable deviation of 350 mm. Beams are designed using reinforcement with diameter 22 mm and 25 mm. The stress ratio value at the pile meets the pile capacity. It can be said that overall the Babo Teluk Bintuni wharf is safe from the working load.


2021 ◽  
Vol 11 (1) ◽  
pp. 6043-6063
Author(s):  
Ali Jafarian ◽  
Seyed Babak Jafarian

Considering the increase in the current construction process and the future needs of Iran, the necessity to use high-rise buildings for reduction in urbanization costs and optimal use of land will be inevitable in the future. The performance of steel plate shear wall system as a modern global system, which has an effective application in high-rise buildings and also brings economic benefits compared to previous systems, is evaluated in this study. Steel Plate Shear Walls (SPSW) are a new type of system resistant to wind and earthquake lateral loads, which dates back to the 1970s. In this research, eight samples of shear wall with various stiffening arrangements and sections with ST37 and ST52 alloys are modeled. To evaluate the nonlinear dynamic analysis, the samples are subjected to the San Fernando earthquake force and are modeled and analyzed by ABAQUS software based on the finite element theory. The results of analyzing the samples indicate better performance of the system with stiffener in both vertical and horizontal directions. Also, the use of sections with ST52 alloy has improved the performance of the shear wall by approximately 40%.


Author(s):  
Alvin Lo ◽  
Hendy Wijaya ◽  
Amelia Yuwono

Bridges are construction structures that are built to connect parts of the road that are cut off by obstacles such as deep valleys, irrigation channel paths. In order to build a bridge, a strong, economical and easy to build foundation is needed to carry gravity loads and also earthquake force. A common problem encountered in bridge foundation is the occurrence of erosion around the piles due to scouring of water which causes exposing some portion of the piles, which are often referred as elevated reinforced concrete pile-cap foundations. In this study, a numerical analysis of pile groups on elevated reinforced concrete pile-cap foundations is carried out with lateral forces on sandy soil to see the ductility behavior of piles using geotechnical-based programs and to compare the results with the previous studies. The analysis includes the pilecap model and the soil-to-pile interaction and also considers the pile group effect. The analysis was carried out to see the structural and geotechnical conditions on the ductility behavior of a partially embedded piles on sandy soil. The result obtained is a comparison of the ductility and overstrength values that can be used as a consideration in designing elevated reinforced concrete pile-cap foundations.Keywords: Elevated RC pile-cap foundations; numerical analysis; lateral force; ductility AbstrakJembatan adalah struktur konstruksi yang dibangun untuk menghubungkan bagian jalan yang terputus oleh rintangan-rintangan seperti lembah yang dalam, alur saluran irigasi. Untuk membangun sebuah jembatan, diperlukan fondasi yang kuat, ekonomis dan mudah untuk dibangun untuk memikul beban dari jembatan dan juga gaya gempa. Masalah yang umum ditemui pada konstruksi fondasi jembatan adalah terjadinya erosi pada sekitar fondasi dikarenakan gerusan air yang menyebabkan tanah terangkat dan memperlihatkan sebagian tiang fondasi, yang sering disebut dengan elevated reinforced concrete pile-cap foundations. Pada penelitian ini dilakukan analisis secara numerik terhadap kelompok tiang pada elevated reinforced concrete pile-cap foundations yang dibebani gaya lateral pada tanah berpasir untuk melihat perilaku daktilitas tiang dengan bantuan program berbasis geoteknik dan membandingkan dengan hasil penelitian terdahulu. Analisis menyertakan model kepala tiang dan hubungan antara tanah dengan tiang serta mempertimbangkan efek kelompok tiang. Analisis dilakukan untuk melihat kondisi struktural dan geoteknikal pada perilaku daktilitas fondasi yang ditanam sebagian pada tanah pasir. Hasil yang didapatkan adalah perbandingan nilai daktilitas dan overstrength yang dapat digunakan sebagai pertimbangan dalam mendesain elevated reinforced concrete pile-cap foundations.


2021 ◽  
Vol 1 (1) ◽  
pp. 24-34
Author(s):  
Evantianus Sansujaya ◽  
Jusuf J.S. Pah ◽  
I Made Udiana

The main principle of designing the multi-storey building is increasing the building strength on lateral force. The higher the building, then the more vulnerable the building in resisting the lateral force, such as earthquake force. In structure design in multi-storey building, there are 2 systems lateral force restraint that often used, that are frame that use shear wall and frame without shear wall. The purpose of this research is to analyze the effect of shear wall placement with respect to structure deflection as an effect of quake load also to find out the sensitivity of the adding the amount of shear wall on decreasing rate of structure deflection as an effect of quake load, that the calculation of quake load effect done by use the Equivalent Static Analysis Method. The result of the analysis obtained the structure deflection decreases with the increasing of the amount of shear wall and the average of decreasing rate of structure deflection for every addition of 1% shear wall is 1.97% also the layout of shear wall placement very react on structure deflection alteration.


2021 ◽  
Vol 4 (1) ◽  
pp. 16
Author(s):  
Leonardus Setia Budi Wibowo ◽  
Dermawan Zebua

Indonesia is one of the countries in the earthquake region. Therefore, it is necessary to build earthquake-resistant buildings to reduce the risk of material and life losses. Reinforced Concrete (RC) shear walls is one of effective structure element to resist earthquake forces. Applying RC shear wall can effectively reduce the displacement and story-drift of the structure. This research aims to study the effect of shear wall location in symmetric medium-rise building due to seismic loading. The symmetric medium rise-building is analyzed for earthquake force by considering two types of structural system. i.e. Frame system and Dual system. First model is open frame structural system and other three models are dual type structural system. The frame with shear walls at core and centrally placed at exterior frames showed significant reduction more than 80% lateral displacement at the top of structure.


2020 ◽  
pp. 875529302097096
Author(s):  
D Jared DeBock ◽  
Michael Valley ◽  
Conrad (Sandy) Hohener

ASCE/SEI 7 design requirements for seismic-induced torsion in buildings are evaluated to determine their effectiveness for resisting seismic-induced collapse of torsionally irregular buildings. The ASCE/SEI 7-16 provisions are found to be generally conservative for most torsionally irregular building configurations—exceptions are some buildings that rely heavily on lines of lateral resistance orthogonal to the design earthquake force to resist torsional moments, and also some torsionally flexible buildings designed using modal response spectrum analysis. Modifications to provide better consistency in collapse resistance over a large range of building configurations and degrees of torsional irregularity are recommended. The study also demonstrates that buildings classified as extremely torsionally irregular may not need to be prohibited from Seismic Design Categories E and F, as long as the lateral system is proportioned properly.


Sign in / Sign up

Export Citation Format

Share Document