scholarly journals Optimizing Visual Cortex Parameterization with Error-Tolerant Teichmüller Map in Retinotopic Mapping

Author(s):  
Yanshuai Tu ◽  
Duyan Ta ◽  
Zhong-Lin Lu ◽  
Yalin Wang
2008 ◽  
Vol 49 (8) ◽  
pp. 3734 ◽  
Author(s):  
Michael D. Crossland ◽  
Antony B. Morland ◽  
Mary P. Feely ◽  
Elisabeth von dem Hagen ◽  
Gary S. Rubin

2007 ◽  
Vol 26 (11) ◽  
pp. 3277-3290 ◽  
Author(s):  
Andrew J. Trevelyan ◽  
A. L. Upton ◽  
Patricia M. Cordery ◽  
Ian D. Thompson

2007 ◽  
Vol 104 (29) ◽  
pp. 12169-12174 ◽  
Author(s):  
B. W. Zeff ◽  
B. R. White ◽  
H. Dehghani ◽  
B. L. Schlaggar ◽  
J. P. Culver

2007 ◽  
Vol 98 (2) ◽  
pp. 1002-1014 ◽  
Author(s):  
Zhiyong Yang ◽  
David J. Heeger ◽  
Eyal Seidemann

Retinotopy is a fundamental organizing principle of the visual cortex. Over the years, a variety of techniques have been used to examine it. None of these techniques, however, provides a way to rapidly characterize retinotopy, at the submillimeter range, in alert, behaving subjects. Voltage-sensitive dye imaging (VSDI) can be used to monitor neuronal population activity at high spatial and temporal resolutions. Here we present a VSDI protocol for rapid and precise retinotopic mapping in the behaving monkey. Two monkeys performed a fixation task while thin visual stimuli swept periodically at a high speed in one of two possible directions through a small region of visual space. Because visual space is represented systematically across the cortical surface, each moving stimulus produced a traveling wave of activity in the cortex that could be precisely measured with VSDI. The time at which the peak of the traveling wave reached each location in the cortex linked this location with its retinotopic representation. We obtained detailed retinotopic maps from a region of about 1 cm2 over the dorsal portion of areas V1 and V2. Retinotopy obtained during <4 min of imaging had a spatial precision of 0.11–0.19 mm, was consistent across experiments, and reliably predicted the locations of the response to small localized stimuli. The ability to rapidly obtain precise retinotopic maps in behaving monkeys opens the door for detailed analysis of the relationship between spatiotemporal dynamics of population responses in the visual cortex and perceptually guided behavior.


2015 ◽  
Vol 42 (6Part43) ◽  
pp. 3735-3736
Author(s):  
W Zhou ◽  
E Muir ◽  
G Clarke ◽  
T Duong

2011 ◽  
Vol 34 (4) ◽  
pp. 652-661 ◽  
Author(s):  
Gavin Perry ◽  
Peyman Adjamian ◽  
Ngoc J. Thai ◽  
Ian E. Holliday ◽  
Arjan Hillebrand ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document