Pictorial Image Synthesis from Text and Its Super-Resolution Using Generative Adversarial Networks

Author(s):  
Khushboo Patel ◽  
Parth Shah
Author(s):  
Amey Thakur

Abstract: Deep learning's breakthrough in the field of artificial intelligence has resulted in the creation of a slew of deep learning models. One of these is the Generative Adversarial Network, which has only recently emerged. The goal of GAN is to use unsupervised learning to analyse the distribution of data and create more accurate results. The GAN allows the learning of deep representations in the absence of substantial labelled training information. Computer vision, language and video processing, and image synthesis are just a few of the applications that might benefit from these representations. The purpose of this research is to get the reader conversant with the GAN framework as well as to provide the background information on Generative Adversarial Networks, including the structure of both the generator and discriminator, as well as the various GAN variants along with their respective architectures. Applications of GANs are also discussed with examples. Keywords: Generative Adversarial Networks (GANs), Generator, Discriminator, Supervised and Unsupervised Learning, Discriminative and Generative Modelling, Backpropagation, Loss Functions, Machine Learning, Deep Learning, Neural Networks, Convolutional Neural Network (CNN), Deep Convolutional GAN (DCGAN), Conditional GAN (cGAN), Information Maximizing GAN (InfoGAN), Stacked GAN (StackGAN), Pix2Pix, Wasserstein GAN (WGAN), Progressive Growing GAN (ProGAN), BigGAN, StyleGAN, CycleGAN, Super-Resolution GAN (SRGAN), Image Synthesis, Image-to-Image Translation.


2021 ◽  
Vol 138 ◽  
pp. 57-67
Author(s):  
Dunlu Peng ◽  
Wuchen Yang ◽  
Cong Liu ◽  
Shuairui Lü

2021 ◽  
pp. 101944
Author(s):  
Mahmut Yurt ◽  
Salman U.H. Dar ◽  
Aykut Erdem ◽  
Erkut Erdem ◽  
Kader K Oguz ◽  
...  

Author(s):  
Khaled ELKarazle ◽  
Valliappan Raman ◽  
Patrick Then

Age estimation models can be employed in many applications, including soft biometrics, content access control, targeted advertising, and many more. However, as some facial images are taken in unrestrained conditions, the quality relegates, which results in the loss of several essential ageing features. This study investigates how introducing a new layer of data processing based on a super-resolution generative adversarial network (SRGAN) model can influence the accuracy of age estimation by enhancing the quality of both the training and testing samples. Additionally, we introduce a novel convolutional neural network (CNN) classifier to distinguish between several age classes. We train one of our classifiers on a reconstructed version of the original dataset and compare its performance with an identical classifier trained on the original version of the same dataset. Our findings reveal that the classifier which trains on the reconstructed dataset produces better classification accuracy, opening the door for more research into building data-centric machine learning systems.


Sign in / Sign up

Export Citation Format

Share Document