An Extension Problem and Hardy Type Inequalities for the Grushin Operator

2021 ◽  
pp. 1-28
Author(s):  
Rakesh Balhara ◽  
Pradeep Boggarapu ◽  
Sundaram Thangavelu

2022 ◽  
Vol 4 (3) ◽  
pp. 1-16
Author(s):  
Luz Roncal ◽  
◽  
◽  

<abstract><p>We prove Hardy type inequalities for the fractional relativistic operator by using two different techniques. The first approach goes through trace Hardy inequalities. In order to get the latter, we study the solutions of the associated extension problem. The second develops a non-local version of the ground state representation in the spirit of Frank, Lieb, and Seiringer.</p></abstract>



2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Ahmed A. El-Deeb ◽  
Hamza A. Elsennary ◽  
Dumitru Baleanu




2012 ◽  
Vol 55 (12) ◽  
pp. 2493-2505 ◽  
Author(s):  
HongLiang Li


1998 ◽  
Vol 194 (1) ◽  
pp. 23-33 ◽  
Author(s):  
D. E. Edmunds ◽  
R. Hurri-Syrjänen






2017 ◽  
Vol 11 (2) ◽  
pp. 438-457 ◽  
Author(s):  
Sajid Iqbal ◽  
Josip Pečarić ◽  
Muhammad Samraiz ◽  
Zivorad Tomovski


2021 ◽  
Vol 45 (5) ◽  
pp. 797-813
Author(s):  
SAJID IQBAL ◽  
◽  
GHULAM FARID ◽  
JOSIP PEČARIĆ ◽  
ARTION KASHURI

In this paper we present variety of Hardy-type inequalities and their refinements for an extension of Riemann-Liouville fractional derivative operators. Moreover, we use an extension of extended Riemann-Liouville fractional derivative and modified extension of Riemann-Liouville fractional derivative using convex and monotone convex functions. Furthermore, mean value theorems and n-exponential convexity of the related functionals is discussed.



Sign in / Sign up

Export Citation Format

Share Document