grushin operator
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 13)

H-INDEX

5
(FIVE YEARS 2)

2021 ◽  
Vol 303 ◽  
pp. 645-666
Author(s):  
Anouar Bahrouni ◽  
Vicenţiu D. Rădulescu ◽  
Dušan D. Repovš




2021 ◽  
pp. 1-28
Author(s):  
Rakesh Balhara ◽  
Pradeep Boggarapu ◽  
Sundaram Thangavelu


2021 ◽  
Vol 6 (3) ◽  
pp. 2623-2635
Author(s):  
Yunfeng Wei ◽  
◽  
Hongwei Yang ◽  
Hongwang Yu ◽  


2021 ◽  
Vol 41 (9) ◽  
pp. 4283
Author(s):  
Anouar Bahrouni ◽  
Vicenţiu D. Rădulescu


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Foued Mtiri

<p style='text-indent:20px;'>We examine the following degenerate elliptic system:</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ -\Delta_{s} u \! = \! v^p, \quad -\Delta_{s} v\! = \! u^\theta, \;\; u, v&gt;0 \;\;\mbox{in }\; \mathbb{R}^N = \mathbb{R}^{N_1}\times \mathbb{R}^{N_2}, \quad\mbox{where}\;\; s \geq 0\;\; \mbox{and} \;\;p, \theta \!&gt;\!0. $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>We prove that the system has no stable solution provided <inline-formula><tex-math id="M1">\begin{document}$ p, \theta &gt;0 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M2">\begin{document}$ N_s: = N_1+(1+s)N_2&lt; 2 + \alpha + \beta, $\end{document}</tex-math></inline-formula> where</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE2"> \begin{document}$ \alpha = \frac{2(p+1)}{p\theta - 1} \quad\mbox{and} \quad \beta = \frac{2(\theta +1)}{p\theta - 1}. $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>This result is an extension of some results in [<xref ref-type="bibr" rid="b15">15</xref>]. In particular, we establish a new integral estimate for <inline-formula><tex-math id="M3">\begin{document}$ u $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M4">\begin{document}$ v $\end{document}</tex-math></inline-formula> (see Proposition 1.1), which is crucial to deal with the case <inline-formula><tex-math id="M5">\begin{document}$ 0 &lt; p &lt; 1. $\end{document}</tex-math></inline-formula></p>



Author(s):  
Anouar Bahrouni ◽  
Vicenţiu D. Rădulescu ◽  
Patrick Winkert

AbstractIn this paper we study a class of quasilinear elliptic equations with double phase energy and reaction term depending on the gradient. The main feature is that the associated functional is driven by the Baouendi–Grushin operator with variable coefficient. This partial differential equation is of mixed type and possesses both elliptic and hyperbolic regions. We first establish some new qualitative properties of a differential operator introduced recently by Bahrouni et al. (Nonlinearity 32(7):2481–2495, 2019). Next, under quite general assumptions on the convection term, we prove the existence of stationary waves by applying the theory of pseudomonotone operators. The analysis carried out in this paper is motivated by patterns arising in the theory of transonic flows.



2020 ◽  
Vol 36 (4) ◽  
pp. 363-378
Author(s):  
Jia Jun Wang ◽  
Qiao Hua Yang
Keyword(s):  


Sign in / Sign up

Export Citation Format

Share Document