A SPEA-Based Group Trading Strategy Portfolio Optimization Algorithm

Author(s):  
Chun-Hao Chen ◽  
Chong-You Ye ◽  
Yeong-Chyi Lee ◽  
Tzung-Pei Hong
2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Q. H. Zhai ◽  
T. Ye ◽  
M. X. Huang ◽  
S. L. Feng ◽  
H. Li

In the field of asset allocation, how to balance the returns of an investment portfolio and its fluctuations is the core issue. Capital asset pricing model, arbitrage pricing theory, and Fama–French three-factor model were used to quantify the price of individual stocks and portfolios. Based on the second-order stochastic dominance rule, the higher moments of return series, the Shannon entropy, and some other actual investment constraints, we construct a multiconstraint portfolio optimization model, aiming at comprehensively weighting the returns and risk of portfolios rather than blindly maximizing its returns. Furthermore, the whale optimization algorithm based on FTSE100 index data is used to optimize the above multiconstraint portfolio optimization model, which significantly improves the rate of return of the simple diversified buy-and-hold strategy or the FTSE100 index. Furthermore, extensive experiments validate the superiority of the whale optimization algorithm over the other four swarm intelligence optimization algorithms (gray wolf optimizer, fruit fly optimization algorithm, particle swarm optimization, and firefly algorithm) through various indicators of the results, especially under harsh constraints.


Kybernetes ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Meeta Sharma ◽  
Hardayal Singh Shekhawat

Purpose The purpose of this study is to provide a novel portfolio asset prediction by means of the modified deep learning and hybrid meta-heuristic concept. In the past few years, portfolio optimization has appeared as a demanding and fascinating multi-objective problem, in the area of computational finance. Yet, it is accepting the growing attention of fund management companies, researchers and individual investors. The primary issues in portfolio selection are the choice of a subset of assets and its related optimal weights of every chosen asset. The composition of every asset is chosen in a manner such that the total profit or return of the portfolio is improved thereby reducing the risk at the same time. Design/methodology/approach This paper provides a novel portfolio asset prediction using the modified deep learning concept. For implementing this framework, a set of data involving the portfolio details of different companies for certain duration is selected. The proposed model involves two main phases. One is to predict the future state or profit of every company, and the other is to select the company which is giving maximum profit in the future. In the first phase, a deep learning model called recurrent neural network (RNN) is used for predicting the future condition of the entire companies taken in the data set and thus creates the data library. Once the forecasting of the data is done, the selection of companies for the portfolio is done using a hybrid optimization algorithm by integrating Jaya algorithm (JA) and spotted hyena optimization (SHO) termed as Jaya-based spotted hyena optimization (J-SHO). This optimization model tries to get the optimal solution including which company has to be selected, and optimized RNN helps to predict the future return while using those companies. The main objective model of the J-SHO-based RNN is to maximize the prediction accuracy and J-SHO-based portfolio asset selection is to maximize the profit. Extensive experiments on the benchmark datasets from real-world stock markets with diverse assets in various time periods shows that the developed model outperforms other state-of-the-art strategies proving its efficiency in portfolio optimization. Findings From the analysis, the profit analysis of proposed J-SHO for predicting after 7 days in next month was 46.15% better than particle swarm optimization (PSO), 18.75% better than grey wolf optimization (GWO), 35.71% better than whale optimization algorithm (WOA), 5.56% superior to JA and 35.71% superior to SHO. Therefore, it can be certified that the proposed J-SHO was effective in providing intelligent portfolio asset selection and prediction when compared with the conventional methods. Originality/value This paper presents a technique for providing a novel portfolio asset prediction using J-SHO algorithm. This is the first work uses J-SHO-based optimization for providing a novel portfolio asset prediction using the modified deep learning concept.


Sign in / Sign up

Export Citation Format

Share Document