portfolio optimization problem
Recently Published Documents


TOTAL DOCUMENTS

191
(FIVE YEARS 66)

H-INDEX

19
(FIVE YEARS 4)

2021 ◽  
pp. 105631
Author(s):  
Renatas Kizys ◽  
Jana Doering ◽  
Angel A. Juan ◽  
Onur Polat ◽  
Laura Calvet ◽  
...  

Mathematics ◽  
2021 ◽  
Vol 9 (20) ◽  
pp. 2621
Author(s):  
Shicheng Hu ◽  
Danping Li ◽  
Junmin Jia ◽  
Yang Liu

An investment in a portfolio can not only guarantee returns but can also effectively control risk factors. Portfolio optimization is a multi-objective optimization problem. In order to better assist a decision maker to obtain his/her preferred investment solution, an interactive multi-criterion decision making system (MV-IMCDM) is designed for the Mean-Variance (MV) model of the portfolio optimization problem. Considering the flexibility requirement of a preference model that provides a guiding role in MV-IMCDM, a self-learning based preference model DT-PM (decision tree-preference model) is constructed. Compared with the present function based preference model, the DT-PM fully considers a decision maker’s bounded rationality. It does not require an assumption that the decision maker’s preference structure and preference change are known a priori and can be automatically generated and completely updated by learning from the decision maker’s preference feedback. Experimental results of a comparison show that, in the case that the decision maker’s preference structure and preference change are unknown a priori, the performances of guidance and fitness of the DT-PM are remarkably superior to function based preference models; in the case that the decision maker’s preference structure is known a priori, the performances of guidance and fitness of the DT-PM is approximated to the predefined function based model. It can be concluded that the DT-PM can agree with the preference ambiguity and the variability of a decision maker with bounded rationality and be applied more widely in a real decision system.


2021 ◽  
Vol 12 (4) ◽  
pp. 98-116
Author(s):  
Noureddine Boukhari ◽  
Fatima Debbat ◽  
Nicolas Monmarché ◽  
Mohamed Slimane

Evolution strategies (ES) are a family of strong stochastic methods for global optimization and have proved their capability in avoiding local optima more than other optimization methods. Many researchers have investigated different versions of the original evolution strategy with good results in a variety of optimization problems. However, the convergence rate of the algorithm to the global optimum stays asymptotic. In order to accelerate the convergence rate, a hybrid approach is proposed using the nonlinear simplex method (Nelder-Mead) and an adaptive scheme to control the local search application, and the authors demonstrate that such combination yields significantly better convergence. The new proposed method has been tested on 15 complex benchmark functions and applied to the bi-objective portfolio optimization problem and compared with other state-of-the-art techniques. Experimental results show that the performance is improved by this hybridization in terms of solution eminence and strong convergence.


2021 ◽  
Author(s):  
Agostino Capponi ◽  
Sveinn Ólafsson ◽  
Thaleia Zariphopoulou

Automated investment managers, or robo-advisors, have emerged as an alternative to traditional financial advisors. The viability of robo-advisors crucially depends on their ability to offer personalized financial advice. We introduce a novel framework in which a robo-advisor interacts with a client to solve an adaptive mean-variance portfolio optimization problem. The risk-return tradeoff adapts to the client’s risk profile, which depends on idiosyncratic characteristics, market returns, and economic conditions. We show that the optimal investment strategy includes both myopic and intertemporal hedging terms that reflect the dynamic risk profile of the client. We characterize the optimal portfolio personalization via a tradeoff faced by the robo-advisor between receiving information from the client in a timely manner and mitigating behavioral biases in the communicated risk profile. We argue that the optimal portfolio’s Sharpe ratio and return distribution improve if the robo-advisor counters the client’s tendency to reduce market exposure during economic contractions when the market risk-return tradeoff is more favorable. This paper was accepted by David Simchi-Levi, stochastic models and simulation.


Author(s):  
Ahmadreza Marandi ◽  
Aharon Ben-Tal ◽  
Dick den Hertog ◽  
Bertrand Melenberg

We derive computationally tractable formulations of the robust counterparts of convex quadratic and conic quadratic constraints that are concave in matrix-valued uncertain parameters. We do this for a broad range of uncertainty sets. Our results provide extensions to known results from the literature. We also consider hard quadratic constraints: those that are convex in uncertain matrix-valued parameters. For the robust counterpart of such constraints, we derive inner and outer tractable approximations. As an application, we show how to construct a natural uncertainty set based on a statistical confidence set around a sample mean vector and covariance matrix and use this to provide a tractable reformulation of the robust counterpart of an uncertain portfolio optimization problem. We also apply the results of this paper to norm approximation problems. Summary of Contribution: This paper develops new theoretical results and algorithms that extend the scope of a robust quadratic optimization problem. More specifically, we derive computationally tractable formulations of the robust counterparts of convex quadratic and conic quadratic constraints that are concave in matrix-valued uncertain parameters. We also consider hard quadratic constraints: those that are convex in uncertain matrix-valued parameters. For the robust counterpart of such constraints, we derive inner and outer tractable approximations.


2021 ◽  
Vol 47 (3) ◽  
pp. 1236-1242
Author(s):  
Collether John

Portfolio can be defined as a collection of investments. Portfolio optimization usually is about maximizing expected return and/or minimising risk of a portfolio. The mean-variance model makes simplifying assumptions to solve portfolio optimization problem. Presence of realistic constraints leads to a significant different and complex problem. Also, the optimal solution under realistic constraints cannot always be derived from the solution for the frictionless market. The heuristic algorithms are alternative approaches to solve the extended problem. In this research, a heuristic algorithm is presented and improved for higher efficiency and speed. It is a hill climbing algorithm to tackle the extended portfolio optimization problem. The improved algorithm is Hill Climbing Simple–with Reducing Thresh-hold Percentage, named HC-S-R. It is applied in standard portfolio optimization problem and benchmarked with the quadratic programing method and the Threshold Accepting algorithm, a well-known heuristic algorithm for portfolio optimization problem. The results are also compared with its original algorithm HC-S. HC-S-R proves to be a lot faster than HC-S and TA and more effective and efficient than TA. Keywords: Portfolio optimization; Hill climbing algorithm; Threshold percentage; Reducing sequence; Threshold Acceptance algorithm


Sign in / Sign up

Export Citation Format

Share Document