On the Unidirectional Free-Surface Flow Solution in a Rectangular Open Channel

Author(s):  
Souad Mnassri ◽  
Ali Triki
Author(s):  
L. H. Wiryanto ◽  
E. O. Tuck

AbstractA steady two-dimensional free-surface flow in a channel of finite depth is considered. The channel ends abruptly with a barrier in the form of a vertical wall of finite height. Hence the stream, which is uniform far upstream, is forced to go upward and then falls under the effect of gravity. A configuration is examined where the rising stream splits into two jets, one falling backward and the other forward over the wall, in a fountain-like manner. The backward-going jet is assumed to be removed without disturbing the incident stream. This problem is solved numerically by an integral-equation method. Solutions are obtained for various values of a parameter measuring the fraction of the total incoming flux that goes into the forward jet. The limit where this fraction is one is also examined, the water then all passing over the wall, with a 120° corner stagnation point on the upper free surface.


2004 ◽  
Vol 42 (3) ◽  
pp. 263-272 ◽  
Author(s):  
J.-B. Faure ◽  
N. Buil ◽  
B. Gay

Fluids ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 24 ◽  
Author(s):  
Benjamin Binder

Two-dimensional free-surface flow past disturbances in an open channel is a classical problem in hydrodynamics—a problem that has received considerable attention over the last two centuries (e.g., see Lamb’s Treatise, 1879). With traces back to Russell’s experimental observations of the Great Wave of Translation in 1834, Korteweg and de Vries (1895), and others, derived an unforced equation to describe the balance between nonlinearity and dispersion required to model the solitary wave. More recently, Akylas (1984) derived a forced KdV equation to model a pressure distribution on the free-surface (e.g., a ship). Since then, the forced KdV equation has been shown to be a useful model approximation for two-dimensional flow past disturbances in an open channel. In this paper, we review the stationary solutions of the forced KdV equation for four types of localised disturbances: (i) a flat plate separating two free surfaces; (ii) a compact bump, or dip in the channel bottom topography; (iii) a compact distribution of pressure on the free surface and (iv) a step-wise change in the otherwise constant horizontal level of the channel bottom topography. Moreover, Dias and Vanden-Broeck (2002) developed a phase plane method to analyse flow over a bump, and this general approach has also been applied to the three other types of forcing (see Binder et al., 2005–2015, and others). In this study, we use eleven basic flow types to classify the steady solutions of the forced KdV equation using the phase plane method. Additionally, considering solutions that are wave-free both far upstream and far downstream, we compare KdV model approximations of the uniform flow conditions in the far-field with exact solutions of the full problem. In particular, we derive a new KdV model approximation for the upstream dimensionless flow-rate which is conveniently given in terms of the known downstream dimensionless flow-rate.


Sign in / Sign up

Export Citation Format

Share Document