Automatic Liver and Hepatic Tumors Segmentation in CT Images Using Convolutional Neural Networks

Author(s):  
Alina S. Danciu ◽  
Simona Vlad ◽  
Marius Leordeanu
2019 ◽  
Vol 12 (9) ◽  
pp. 848-852 ◽  
Author(s):  
Renan Sales Barros ◽  
Manon L Tolhuisen ◽  
Anna MM Boers ◽  
Ivo Jansen ◽  
Elena Ponomareva ◽  
...  

Background and purposeInfarct volume is a valuable outcome measure in treatment trials of acute ischemic stroke and is strongly associated with functional outcome. Its manual volumetric assessment is, however, too demanding to be implemented in clinical practice.ObjectiveTo assess the value of convolutional neural networks (CNNs) in the automatic segmentation of infarct volume in follow-up CT images in a large population of patients with acute ischemic stroke.Materials and methodsWe included CT images of 1026 patients from a large pooling of patients with acute ischemic stroke. A reference standard for the infarct segmentation was generated by manual delineation. We introduce three CNN models for the segmentation of subtle, intermediate, and severe hypodense lesions. The fully automated infarct segmentation was defined as the combination of the results of these three CNNs. The results of the three-CNNs approach were compared with the results from a single CNN approach and with the reference standard segmentations.ResultsThe median infarct volume was 48 mL (IQR 15–125 mL). Comparison between the volumes of the three-CNNs approach and manually delineated infarct volumes showed excellent agreement, with an intraclass correlation coefficient (ICC) of 0.88. Even better agreement was found for severe and intermediate hypodense infarcts, with ICCs of 0.98 and 0.93, respectively. Although the number of patients used for training in the single CNN approach was much larger, the accuracy of the three-CNNs approach strongly outperformed the single CNN approach, which had an ICC of 0.34.ConclusionConvolutional neural networks are valuable and accurate in the quantitative assessment of infarct volumes, for both subtle and severe hypodense infarcts in follow-up CT images. Our proposed three-CNNs approach strongly outperforms a more straightforward single CNN approach.


Author(s):  
Furqan SHAUKAT ◽  
Kamran JAVED ◽  
Gulistan RAJA ◽  
Junaid MIR ◽  
Muhammad Laiq Ur Rahman SHAHID

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Gangadhar Ch ◽  
Nama Ajay Nagendra ◽  
Syed Mutahar Aaqib ◽  
C.M. Sulaikha ◽  
Shaheena Kv ◽  
...  

Purpose COVID-19 would have a far-reaching impact on the international health-care industry and the patients. For COVID-19, there is a need for unique screening tests to reliably and rapidly determine who is infected. Medical COVID images protection is critical when data pertaining to computer images are being transmitted through public networks in health information systems. Design/methodology/approach Medical images such as computed tomography (CT) play key role in the diagnosis of COVID-19 patients. Neural networks-based methods are designed to detect COVID patients using chest CT scan images. And CT images are transmitted securely in health information systems. Findings The authors hereby examine neural networks-based COVID diagnosis methods using chest CT scan images and secure transmission of CT images for health information systems. For screening patients infected with COVID-19, a new approach using convolutional neural networks is proposed, and its output is simulated. Originality/value The required patient’s chest CT scan images have been taken from online databases such as GitHub. The experiments show that neural networks-based methods are effective in the diagnosis of COVID-19 patients using chest CT scan images.


Sign in / Sign up

Export Citation Format

Share Document