Translation-Invariant Linear Operators

2011 ◽  
pp. 17-21
Author(s):  
M. W. Wong
1993 ◽  
Vol 113 (1) ◽  
pp. 161-172
Author(s):  
H. G. Dales ◽  
A. Millinoton

The theory of translation-invariant operators on various spaces of functions (or measures or distributions) is a well-trodden field. The problem is to decide, first, whether or not a linear operator between two function spaces on, say, ℝ or ℝ+ which commutes with one or many translations on the two spaces is necessarily continuous, and, second, to give a canonical form for all such continuous operators. In some cases each such operator is zero. The second problem is essentially the ‘multiplier problem’, and it has been extensively discussed; see [7], for example.


1994 ◽  
Vol 06 (05a) ◽  
pp. 1163-1182 ◽  
Author(s):  
MICHAEL AIZENMAN

An elementary proof is given of localization for linear operators H = Ho + λV, with Ho translation invariant, or periodic, and V (·) a random potential, in energy regimes which for weak disorder (λ → 0) are close to the unperturbed spectrum σ (Ho). The analysis is within the approach introduced in the recent study of localization at high disorder by Aizenman and Molchanov [4]; the localization regimes discussed in the two works being supplementary. Included also are some general auxiliary results enhancing the method, which now yields uniform exponential decay for the matrix elements <0|P[a,b] exp (−itH)|x> of the spectrally filtered unitary time evolution operators, with [a, b] in the relevant range.


2016 ◽  
Vol 15 (2) ◽  
pp. 239-255 ◽  
Author(s):  
Nosir Khatamov ◽  
◽  
Rustam Khakimov ◽  

2010 ◽  
Vol 47 (3) ◽  
pp. 289-298 ◽  
Author(s):  
Fadime Dirik ◽  
Oktay Duman ◽  
Kamil Demirci

In the present work, using the concept of A -statistical convergence for double real sequences, we obtain a statistical approximation theorem for sequences of positive linear operators defined on the space of all real valued B -continuous functions on a compact subset of the real line. Furthermore, we display an application which shows that our new result is stronger than its classical version.


Author(s):  
Brian Street

This chapter discusses a case for single-parameter singular integral operators, where ρ‎ is the usual distance on ℝn. There, we obtain the most classical theory of singular integrals, which is useful for studying elliptic partial differential operators. The chapter defines singular integral operators in three equivalent ways. This trichotomy can be seen three times, in increasing generality: Theorems 1.1.23, 1.1.26, and 1.2.10. This trichotomy is developed even when the operators are not translation invariant (many authors discuss such ideas only for translation invariant, or nearly translation invariant operators). It also presents these ideas in a slightly different way than is usual, which helps to motivate later results and definitions.


Filomat ◽  
2017 ◽  
Vol 31 (12) ◽  
pp. 3749-3760 ◽  
Author(s):  
Ali Karaisa ◽  
Uğur Kadak

Upon prior investigation on statistical convergence of fuzzy sequences, we study the notion of pointwise ??-statistical convergence of fuzzy mappings of order ?. Also, we establish the concept of strongly ??-summable sequences of fuzzy mappings and investigate some inclusion relations. Further, we get an analogue of Korovkin-type approximation theorem for fuzzy positive linear operators with respect to ??-statistical convergence. Lastly, we apply fuzzy Bernstein operator to construct an example in support of our result.


Sign in / Sign up

Export Citation Format

Share Document