Geometry of the Gauss Map and Lattice Points in Convex Domains

2014 ◽  
pp. 161-171
Author(s):  
Alex Iosevich ◽  
Elijah Liflyand
Mathematika ◽  
2001 ◽  
Vol 48 (1-2) ◽  
pp. 107-117 ◽  
Author(s):  
L. Brandolini ◽  
L. Colzani ◽  
A. Iosevich ◽  
A. Podkorytov ◽  
G. Travaglini

1999 ◽  
Vol 127 (10) ◽  
pp. 2981-2985
Author(s):  
Alex Iosevich ◽  
Kimberly K. J. Kinateder

2004 ◽  
Vol 143 (2) ◽  
pp. 145-162 ◽  
Author(s):  
Ekkehard Kr�tzel

2015 ◽  
Vol 31 (2) ◽  
pp. 411-438 ◽  
Author(s):  
Jingwei Guo

2018 ◽  
Vol 2020 (10) ◽  
pp. 2918-2951 ◽  
Author(s):  
Nicholas F Marshall

Abstract We consider an optimal stretching problem for strictly convex domains in $\mathbb{R}^d$ that are symmetric with respect to each coordinate hyperplane, where stretching refers to transformation by a diagonal matrix of determinant 1. Specifically, we prove that the stretched convex domain which captures the most positive lattice points in the large volume limit is balanced: the (d − 1)-dimensional measures of the intersections of the domain with each coordinate hyperplane are equal. Our results extend those of Antunes and Freitas, van den Berg, Bucur and Gittins, Ariturk and Laugesen, van den Berg and Gittins, and Gittins and Larson. The approach is motivated by the Fourier analysis techniques used to prove the classical $\#\{(i,j) \in \mathbb{Z}^2 : i^2 +j^2 \le r^2 \} =\pi r^2 + \mathcal{O}(r^{2/3})$ result for the Gauss circle problem.


Mathematics ◽  
2021 ◽  
Vol 9 (23) ◽  
pp. 3056
Author(s):  
Shai Gul ◽  
Reuven Cohen

We present efficient strategies for covering classes of thin domains in the plane using unit discs. We start with efficient covering of narrow domains using a single row of covering discs. We then move to efficient covering of general rectangles by discs centered at the lattice points of an irregular hexagonal lattice. This optimization uses a lattice that leads to a covering using a small number of discs. We compare the bounds on the covering using the presented strategies to the bounds obtained from the standard honeycomb covering, which is asymptotically optimal for fat domains, and show the improvement for thin domains.


2018 ◽  
Vol 106 (03) ◽  
pp. 287-341 ◽  
Author(s):  
ANTONIO ALARCÓN ◽  
FRANC FORSTNERIČ

In this paper we survey recent developments in the classical theory of minimal surfaces in Euclidean spaces which have been obtained as applications of both classical and modern complex analytic methods; in particular, Oka theory, period dominating holomorphic sprays, gluing methods for holomorphic maps, and the Riemann–Hilbert boundary value problem. Emphasis is on results pertaining to the global theory of minimal surfaces, in particular, the Calabi–Yau problem, constructions of properly immersed and embedded minimal surfaces in $\mathbb{R}^{n}$ and in minimally convex domains of $\mathbb{R}^{n}$ , results on the complex Gauss map, isotopies of conformal minimal immersions, and the analysis of the homotopy type of the space of all conformal minimal immersions from a given open Riemann surface.


Author(s):  
N. A. Balonin ◽  
M. B. Sergeev ◽  
J. Seberry ◽  
O. I. Sinitsyna

Introduction: The Hadamard conjecture about the existence of Hadamard matrices in all orders multiple of 4, and the Gauss problem about the number of points in a circle are among the most important turning points in the development of mathematics. They both stimulated the development of scientific schools around the world with an immense amount of works. There are substantiations that these scientific problems are deeply connected. The number of Gaussian points (Z3 lattice points) on a spheroid, cone, paraboloid or parabola, along with their location, determines the number and types of Hadamard matrices.Purpose: Specification of the upper and lower bounds for the number of Gaussian points (with odd coordinates) on a spheroid depending on the problem size, in order to specify the Gauss theorem (about the solvability of quadratic problems in triangular numbers by projections onto the Liouville plane) with estimates for the case of Hadamard matrices. Methods: The authors, in addition to their previous ideas about proving the Hadamard conjecture on the base of a one-to-one correspondence between orthogonal matrices and Gaussian points, propose one more way, using the properties of generalized circles on Z3 .Results: It is proved that for a spheroid, the lower bound of all Gaussian points with odd coordinates is equal to the equator radius R, the upper limit of the points located above the equator is equal to the length of this equator L=2πR, and the total number of points is limited to 2L. Due to the spheroid symmetry in the sector with positive coordinates (octant), this gives the values of R/8 and L/4. Thus, the number of Gaussian points with odd coordinates does not exceed the border perimeter and is no less than the relative share of the sector in the total volume of the figure.Practical significance: Hadamard matrices associated with lattice points have a direct practical significance for noise-resistant coding, compression and masking of video information.


1948 ◽  
Vol os-19 (1) ◽  
pp. 238-248 ◽  
Author(s):  
S. BOCHNER ◽  
K. CHANDRASEKHARAN
Keyword(s):  

2021 ◽  
Vol 9 ◽  
Author(s):  
Joseph Malkoun ◽  
Peter J. Olver

Abstract Given n distinct points $\mathbf {x}_1, \ldots , \mathbf {x}_n$ in $\mathbb {R}^d$ , let K denote their convex hull, which we assume to be d-dimensional, and $B = \partial K $ its $(d-1)$ -dimensional boundary. We construct an explicit, easily computable one-parameter family of continuous maps $\mathbf {f}_{\varepsilon } \colon \mathbb {S}^{d-1} \to K$ which, for $\varepsilon> 0$ , are defined on the $(d-1)$ -dimensional sphere, and whose images $\mathbf {f}_{\varepsilon }({\mathbb {S}^{d-1}})$ are codimension $1$ submanifolds contained in the interior of K. Moreover, as the parameter $\varepsilon $ goes to $0^+$ , the images $\mathbf {f}_{\varepsilon } ({\mathbb {S}^{d-1}})$ converge, as sets, to the boundary B of the convex hull. We prove this theorem using techniques from convex geometry of (spherical) polytopes and set-valued homology. We further establish an interesting relationship with the Gauss map of the polytope B, appropriately defined. Several computer plots illustrating these results are included.


Sign in / Sign up

Export Citation Format

Share Document