Minimal Projections and Near-Best Approximations by Multivariate Polynomial Expansion and Interpolation

Author(s):  
John C. Mason
Axioms ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 27
Author(s):  
Hari Mohan Srivastava ◽  
Ahmad Motamednezhad ◽  
Safa Salehian

In this paper, we introduce a new comprehensive subclass ΣB(λ,μ,β) of meromorphic bi-univalent functions in the open unit disk U. We also find the upper bounds for the initial Taylor-Maclaurin coefficients |b0|, |b1| and |b2| for functions in this comprehensive subclass. Moreover, we obtain estimates for the general coefficients |bn|(n≧1) for functions in the subclass ΣB(λ,μ,β) by making use of the Faber polynomial expansion method. The results presented in this paper would generalize and improve several recent works on the subject.


2020 ◽  
Vol 14 (1) ◽  
pp. 293-306
Author(s):  
Claire Delaplace ◽  
Alexander May

AbstractWe give a 4-list algorithm for solving the Elliptic Curve Discrete Logarithm (ECDLP) over some quadratic field 𝔽p2. Using the representation technique, we reduce ECDLP to a multivariate polynomial zero testing problem. Our solution of this problem using bivariate polynomial multi-evaluation yields a p1.314-algorithm for ECDLP. While this is inferior to Pollard’s Rho algorithm with square root (in the field size) complexity 𝓞(p), it still has the potential to open a path to an o(p)-algorithm for ECDLP, since all involved lists are of size as small as $\begin{array}{} p^{\frac 3 4}, \end{array}$ only their computation is yet too costly.


2019 ◽  
Vol 69 (6) ◽  
pp. 1367-1380 ◽  
Author(s):  
Stanislav Chaichenko ◽  
Andrii Shidlich ◽  
Fahreddin Abdullayev

Abstract In the Orlicz type spaces 𝓢M, we prove direct and inverse approximation theorems in terms of the best approximations of functions and moduli of smoothness of fractional order. We also show the equivalence between moduli of smoothness and Peetre K-functionals in the spaces 𝓢M.


2003 ◽  
Vol 32 (2) ◽  
pp. 435-454 ◽  
Author(s):  
B. Mourrain ◽  
V. Y. Pan ◽  
O. Ruatta

Sign in / Sign up

Export Citation Format

Share Document