random response
Recently Published Documents


TOTAL DOCUMENTS

330
(FIVE YEARS 27)

H-INDEX

22
(FIVE YEARS 2)

2022 ◽  
Author(s):  
G Sowmiya ◽  
S. Malarvizhi

Abstract During testing utmost all appropriate and suitable strategy needs to be established for consistent fault coverage, improved controllability and observability. The scan chains used in BIST allows some fine control over data propagations that is used as a backdoor to break the security over cryptographic cores. To alleviate these scan-based side-channel attacks, implementing a more inclusive security strategy is required to confuse the attacker and to ensure the key management process which is always a difficult task to task in cryptographic research. In this work for testing AES core Design-for-Testability (DfT) is considered with some random response compaction, bit masking during the scan process. In the proposed scan architecture, scan-based attack does not allow finding out actual computations which are related to the cipher transformations and key sequence. And observing the data through the scan structure is secured. The experimental results validate the potential metrics of the proposed scan model in terms of robustness to the scan attack and penalty gap that exists due to the inclusion of scan designs in AES core. Also investigate the selection of appropriate location points to implement the bit level modification to avoid attack for retrieving a key.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yang Zheng ◽  
Jiayin Wu ◽  
Ming Xu

The random response and mean crossing rate of the fractional order nonlinear system with impact are investigated through the equivalent nonlinearization technique. The random additive excitation is Gaussian white noise, while the impact is described by a phenomenological model, which is developed from the actual impact process experiments. Based on the equivalent nonlinearization technique, one class of random nonlinear system with exact probability density function (PDF) solution of response is selected. The criterion of the appropriate equivalent nonlinear system is the similarity with the original system on the damping, stiffness, and inertia. The more similar, the higher the precision. The optimal unknown parameters of the equivalent random nonlinear system in the damping and stiffness terms are determined by the rule of smallest mean-square difference. In the view of equivalent nonlinearization technique, the response of the original system is the same as that of the equivalent system with the optimal unknown parameters in analytical solution manner. Then, the mean crossing rate is derived from stationary PDF. The consistence between the results from proposed technique and Monte Carlo simulation reveals the accuracy of the proposed analytical procedure.


2021 ◽  
pp. 1-33
Author(s):  
Mao Lin Deng ◽  
Genjin Mu ◽  
Weiqiu Zhu

Abstract Many wake-oscillator models applied to study vortex-induced vibration (VIV) are assumed to be excited by ideal wind that is assumed to be uniform flow with constant velocity. While in the field of wind engineering, the real wind generally is described to be composed of mean wind and fluctuating wind. The wake-oscillator excited by fluctuating wind should be treated as a randomly excited and dissipated multi-degree of freedom (DOF) nonlinear system. The involved studies are very difficult and so far there are no exact solutions available. The present paper aims to carry out some study works on the stochastic dynamics of VIV. The stochastic averaging method of quasi integrable Hamiltonian systems under wideband random excitation is applied to study the Hartlen-Currie wake-oscillator model and its modified model excited by fluctuating wind. The probability and statistics of the random response of wake-oscillator in resonant or lock-in case and in non-resonant case are analytically obtained, and the theoretical results are confirmed by using numerical simulation of original system. Finally, it is pointed out that the stochastic averaging method of quasi integrable Hamiltonian systems under wideband random excitation can also be applied to other wake-oscillator models, such as Skop-Griffin model and Krenk-Nielsen model excited by fluctuating wind.


Sign in / Sign up

Export Citation Format

Share Document