Asymptotics of Eigenvalues for Many-Particle Hamiltonians at Symmetry Subspaces

Author(s):  
S. A. Vugal’ter
2002 ◽  
Vol 45 (3) ◽  
pp. 631-645 ◽  
Author(s):  
Paul A. Binding ◽  
Patrick J. Browne ◽  
Bruce A. Watson

AbstractWe consider the Sturm–Liouville equation$$ -y''+qy=\lambda y\quad\text{on }[0,1], $$subject to the boundary conditions$$ y(0)\cos\alpha=y'(0)\sin\alpha,\quad\alpha\in[0,\pi), $$and$$\frac{y'}{y}(1)=a\lambda+b-\sum_{k=1}^N\frac{b_k}{\lambda-c_k}. $$Topics treated include existence and asymptotics of eigenvalues, oscillation of eigenfunctions, and transformations between such problems.AMS 2000 Mathematics subject classification: Primary 34B24; 34L20


Sign in / Sign up

Export Citation Format

Share Document