strain field
Recently Published Documents


TOTAL DOCUMENTS

1195
(FIVE YEARS 173)

H-INDEX

47
(FIVE YEARS 6)

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 538
Author(s):  
Qinghe Zhang ◽  
Tianle Zheng ◽  
Xiaorui Wang ◽  
Zhiyuan Fang

The accuracy of the monitoring information is particularly important for exploring fractured rock mass deformation and failure mechanisms and precursor characteristics. Appropriate monitoring methods can not only timely and effectively reflect the failure laws of fractured rock masses but also play an early warning role. To explore more reasonable monitoring methods, uniaxial compression experiments and real-time non-destructive monitoring on prefabricated fractured rock specimens through DIC, AE, and IRT were conducted; the strain field, temperature field, ringing frequency, standard deviation, etc. were analyzed; and correlation between the three methods in the information of audience was explored. The results show the following. (1) The failure evolution process of fractured rock mass can be divided into four stages. DIC can detect the initiation and propagation of cracks near the fractures of the specimen at the earliest stages. (2) The order of occurrence of precursor phenomena in multi-source monitoring information is different, which is vertical strain field > shear strain field > horizontal strain field > temperature field > ringing times. (3) The dispersion degree of standard deviation of each field is obviously different; the infrared temperature field is greater, but the strain field and temperature field show the same trend. (4) There are obvious precursors before the specimen is on the verge of instability; acoustic emission detected two consecutive increases in the cumulative number of ringing before destruction, which means the most obvious precursors. The research results can provide a theoretical basis for the precursory information capture and damage early warning of the fractured rock mass destruction process.


2022 ◽  
Author(s):  
Danning Li ◽  
James Barrington ◽  
Stephen James ◽  
David Ayre ◽  
Marcin Sloma ◽  
...  

Abstract Failure in an epoxy polymer composite material is prone to initiate by the coalescence of microcracks in its polymer matrix. As such, matrix toughening via addition of a second phase as rigid or/and rubber nano/micro-particles is one of the most popular approaches to improve the fracture toughness across multiple scales in a polymer composite, which dissipates fracture energy via deformation mechanisms and microcracks arrest. Few studies have focused on tailorable and variable toughening, so-called ‘active toughening’, mainly suggesting thermally induced strains which offer slow and irreversible toughening due to polymer’s poor thermal conductivity. The research presented in the current article has developed an instantaneous, reversible active toughening composite based upon contact-less introduction of a microscopic compressive extrinsic strain field via remote electromagnetic radiation. Quantification of the extrinsic strain evolving in the composite with the microwave energy has been conducted using in-situ real-time fibre optic sensing. A theoretical constitutive equation correlating the exposure energy to micro-strains has been developed, with its solution validating the experimental data and describing their underlying physics. The research has utilised functionalised dielectric ferroelectric nanomaterials, barium titanate (BaTiO3), as a second phase dispersed in an epoxy matrix, able to introduce microscopic electro-strains to their surrounding rigid epoxy subjected to an external electric field (microwaves, herein), as result of their domain walls dipole displacements. Epoxy Araldite LY1564, a diglycidyl ether of bisphenol A (DGEBA) associated with the curing agent Aradur 3487 were embedded with the BaTiO3 nanoparticles. The silane coupling agent for the nanoparticles’ surface functionalisation was 3-glycidoxypropyl trimethoxysilane (3-GPS). Hydrogen peroxide (H2O2, 30%) and acetic acid (C2H4O2, 99.9%) used as functionalisation aids, and the ethanol (C2H6O, 99.9%) used for BaTiO3 dispersion. Firstly, the crystal microstructure of the functionalised nanoparticles and the thermal and dielectric properties of the achieved epoxy composite materials have been characterised. It has been observed that the addition of the dielectric nanoparticles has a slight impact on the curing extent of the epoxy. Secondly, the surface-bonded fibre bragg grating (FBG) sensors have been employed to investigate the real-time variation of strain and temperature in the epoxy composites exposed to microwaves at 2.45 GHz and at different exposure energy. The strains developed due to the in-situ exposure at composite, adhesive and their holding fixture material were evaluated using the FBG. The domain wall induced extrinsic strains were distinguished from the thermally induced strains, and found that the increasing exposure energy has an instantaneously increasing effect on the development of compressive strains. Post-exposure Raman spectra showed no residual field in the composite indicating no remnant strain field examined under microwave powers < 1000 W, thus suggesting a reversible strain introduction mechanism, i.e. the composite retaining its nominal properties post exposure. The dielectric composite development and quantifications presented in this article proposes a novel active toughening technology for high-performance composite applications in numerous sectors.


Measurement ◽  
2022 ◽  
Vol 187 ◽  
pp. 110227
Author(s):  
Jun Li ◽  
Jiajia Yan ◽  
Jianjian Zhu ◽  
Xinlin Qing

Nanoscale ◽  
2022 ◽  
Author(s):  
D. Faurie ◽  
N. Challab ◽  
M. Haboussi ◽  
F. Zighem

A strain field (εxx) in Ti/Co/Al nanowires on the PEN substrate subjected to uniaxial stress. The applied stress perpendicular to the nanowire length leads to very low strain in nanowires (about 30 times lower than the macroscopic strain).


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0262054
Author(s):  
Hongming Cheng ◽  
Xiaobin Yang ◽  
Zewen Zhang ◽  
Wenlong Li ◽  
Zhangxuan Ning

The stress-induced microcrack evolution in rock specimens causes a series of physical changes and heterogeneous deformations. Some of these attributes (such as sound, electricity, heat, etc.) have been effectively used to identify the damage state and precursory information of the rock specimens. However, the strain-field heterogeneity has not been investigated previously. In this study, the relationship of the strain-field heterogeneity and damage evolution of three sandstone specimens under the uniaxial compressive load was analyzed statistically. The acoustic emission (AE) and two-dimensional digital image correlation were employed for real-time evaluation of the AE parameters and strain-field heterogeneity. The results showed that the strain-field heterogeneity was closely related to the rock damage that amplified with the applied stress, and exhibited two features; numerical difference and spatial concentration. Subsequently, these two features were characterized by the two proposed heterogeneous quantitative indicators (i.e., the degree and space heterogeneities). Further, their four transition processes were in agreement with the damage stages confirmed by AE parameters: a relatively constant trend; growth with a relatively constant rate; drastic increase trend; and increase with a high rate to maximum value. Moreover, a time sequence chain for damage precursor was built, where the heterogeneous quantitative indicators and AE parameters differed in sensitivity to microcrack development and can be used as a damage warning at the varying magnitude of the external load.


2021 ◽  
Vol 2127 (1) ◽  
pp. 012057
Author(s):  
P S Martyanov ◽  
P V Zinin ◽  
S A Titov

Abstract In this report a novel method for measuring the elastic properties of thin 10 nm films is described. The method is based on the use of a nanosecond laser for generation acoustic waves in solids. Absorption of the incident laser pulse energy and the associated temperature gradients induces a rapidly changing strain field. This strain field, in turn, radiates energy as elastic (ultrasonic) waves. At low pulse power, this is an entirely thermo elastic process resulting in no damage to the sample. The acoustic echo arriving at the probed surface causes both the displacement of the surface (a few nanometres) and the strain in the subsurface material, which might be detected through the variation of the optical reflectivity of the material, i.e. through the acousto-optic effect.


2021 ◽  
Vol 11 (20) ◽  
pp. 9419
Author(s):  
Sergey Lazarev ◽  
Young Yong Kim ◽  
Luca Gelisio ◽  
Zhaoxia Bi ◽  
Ali Nowzari ◽  
...  

Semiconductor nanowires (NWs) have a broad range of applications for nano- and optoelectronics. The strain field of gallium nitride (GaN) NWs could be significantly changed when contacts are applied to them to form a final device, especially considering the piezoelectric properties of GaN. Investigation of influence of the metallic contacts on the structure of the NWs is of high importance for their applications in real devices. We have studied a series of different type of contacts and influence of the applied voltage bias on the contacted GaN NWs with the length of about 3 to 4 micrometers and with two different diameters of 200 nm and 350 nm. It was demonstrated that the NWs with the diameter of 200 nm are bend already by the interaction with the substrate. For all GaN NWs, significant structural changes were revealed after the contacts deposition. The results of our research may contribute to the future optoelectronic applications of the GaN nanowires.


Sign in / Sign up

Export Citation Format

Share Document