A Note on the Linear Complexity Profile of the Discrete Logarithm in Finite Fields

Author(s):  
Arne Winterhof
2012 ◽  
Vol 15 ◽  
pp. 326-340 ◽  
Author(s):  
Claus Diem

AbstractFrom power series expansions of functions on curves over finite fields, one can obtain sequences with perfect or almost perfect linear complexity profile. It has been suggested by various authors to use such sequences as key streams for stream ciphers. In this work, we show how long parts of such sequences can be computed efficiently from short ones. Such sequences should therefore be considered to be cryptographically weak. Our attack leads in a natural way to a new measure of the complexity of sequences which we call expansion complexity.


1999 ◽  
Vol 5 (3) ◽  
pp. 301-313 ◽  
Author(s):  
Chaoping Xing ◽  
Harald Niederreiter ◽  
Kwok Yan Lam ◽  
Cunsheng Ding

Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Zhixiong Chen ◽  
Qiuyan Wang

Let Fq be the finite field with q=pr elements, where p is an odd prime. For the ordered elements ξ0,ξ1,…,ξq-1∈Fq, the binary sequence σ=(σ0,σ1,…,σq-1) with period q is defined over the finite field F2={0,1} as follows: σn=0,  if  n=0,  (1-χ(ξn))/2,  if  1≤n<q,  σn+q=σn, where χ is the quadratic character of Fq. Obviously, σ is the Legendre sequence if r=1. In this paper, our first contribution is to prove a lower bound on the linear complexity of σ for r≥2, which improves some results of Meidl and Winterhof. Our second contribution is to study the distribution of the k-error linear complexity of σ for r=2. Unfortunately, the method presented in this paper seems not suitable for the case r>2 and we leave it open.


Author(s):  
Anna ILYENKO ◽  
Sergii ILYENKO ◽  
Yana MASUR

In this article, the main problems underlying the current asymmetric crypto algorithms for the formation and verification of electronic-digital signature are considered: problems of factorization of large integers and problems of discrete logarithm. It is noted that for the second problem, it is possible to use algebraic groups of points other than finite fields. The group of points of the elliptical curve, which satisfies all set requirements, looked attractive on this side. Aspects of the application of elliptic curves in cryptography and the possibilities offered by these algebraic groups in terms of computational efficiency and crypto-stability of algorithms were also considered. Information systems using elliptic curves, the keys have a shorter length than the algorithms above the finite fields. Theoretical directions of improvement of procedure of formation and verification of electronic-digital signature with the possibility of ensuring the integrity and confidentiality of information were considered. The proposed method is based on the Schnorr signature algorithm, which allows data to be recovered directly from the signature itself, similarly to RSA-like signature systems, and the amount of recoverable information is variable depending on the information message. As a result, the length of the signature itself, which is equal to the sum of the length of the end field over which the elliptic curve is determined, and the artificial excess redundancy provided to the hidden message was achieved.


2016 ◽  
Vol 9 (4) ◽  
pp. 501-509 ◽  
Author(s):  
László Mérai ◽  
Harald Niederreiter ◽  
Arne Winterhof

Author(s):  
Longfei Liu ◽  
Xiaoyuan Yang ◽  
Bin Wei ◽  
Liqiang Wu

Periodic sequences over finite fields, constructed by classical cyclotomic classes and generalized cyclotomic classes, have good pseudo-random properties. The linear complexity of a period sequence plays a fundamental role in the randomness of sequences. In this paper, we construct a new family of quaternary generalized cyclotomic sequences with order [Formula: see text] and length [Formula: see text], which generalize the sequences constructed by Ke et al. in 2012. In addition, we determine its linear complexity using cyclotomic theory. The conclusions reveal that these sequences have high linear complexity, which means they can resist linear attacks.


Sign in / Sign up

Export Citation Format

Share Document