binary sequence
Recently Published Documents


TOTAL DOCUMENTS

453
(FIVE YEARS 109)

H-INDEX

24
(FIVE YEARS 2)

2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
Lihui Gao ◽  
Yongkang Liu ◽  
Nan Chen ◽  
Haolin Li ◽  
Niaona Zhang ◽  
...  

The exploration target at different depths through the ground-airborne frequency domain electromagnetic method (GAFDEM) is detected by transmitting waveforms at different frequencies. When taking these different depths into detail, arbitrarily distributed frequencies are needed. However, the current transmitting waveforms are mostly in a fixed frequency ratio or frequency difference, which fails to meet the requirements of exploration accuracy and efficiency at the same time. Therefore, as a solution to this problem, this paper proposes a transmitting waveform design method based on selective harmonic eliminated pulse width modulation (SHEPWM) technology. In the SHEPWM method, three transmitting waveforms with the desired spectrum are obtained by directly controlling the switching angles of a binary sequence with an artificial neural network algorithm. Firstly, our study puts forward the basic theories and principles of the full-periodic asymmetric SHEPWM waveform. Secondly, the study, through simulation, realizes the pseudorandom, depth-focused, and layer-identification waveform with different detection depths. Finally, the application of the proposed SHEPWM waveform to the geological survey in Kaili City, Guizhou Province, proves the correctness and feasibility of this proposed method.


Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 68
Author(s):  
Serhii Haliuk ◽  
Oleh Krulikovskyi ◽  
Dmytro Vovchuk ◽  
Fernando Corinto

This paper suggests an approach to generate pseudo-random sequences based on the discrete-time model of the simple memristive chaotic system. We show that implementing Euler’s and Runge–Kutta’s methods for the simulation solutions gives the possibility of obtaining chaotic sequences that maintain general properties of the original chaotic system. A preliminary criterion based on the binary sequence balance estimation is proposed and applied to separate any binary representation of the chaotic time sequences into random and non-random parts. This gives us the possibility to delete obviously non-random sequences prior to the post-processing. The investigations were performed for arithmetic with both fixed and floating points. In both cases, the obtained sequences successfully passed the NIST SP 800-22 statistical tests. The utilization of the unidirectional asymmetric coupling of chaotic systems without full synchronization between them was suggested to increase the performance of the chaotic pseudo-random number generator (CPRNG) and avoid identical sequences on different outputs of the coupled systems. The proposed CPRNG was also implemented and tested on FPGA using Euler’s method and fixed-point arithmetic for possible usage in different applications. The FPGA implementation of CPRNG supports a generation speed up to 1.2 Gbits/s for a clock frequency of 50 MHz. In addition, we presented an example of the application of CPRNG to symmetric image encryption, but nevertheless, one is suitable for the encryption of any binary source.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Deyang Wu ◽  
Miaomiao Wang ◽  
Jing Zhao ◽  
Jiayan Wang ◽  
Meiyu Zhong ◽  
...  

With the widespread use of medical images in telemedicine, personal information may be leaked. The traditional zero-watermarking technology has poor robustness under large-scale attacks. At the same time, most of the zero-watermarking information generated is a binary sequence with a single information structure. In order to effectively solve the poor robustness problem of traditional zero-watermarking under large-scale attacks, a color zero-watermarking algorithm for medical images based on bidimensional empirical mode decomposition (BEMD)-Schur decomposition and color visual cryptography is proposed. Firstly, the color carrier image and the color copyright logo are decomposed into R, G, and B three color components, respectively, and the feature value of each sub-block are extracted by wavelet transform, BEMD decomposition, block operation, and Schur decomposition. Then, the R, G, and B components of the copyright logo are scrambled by Arnold scramble and converted into binary watermark information. Finally, a color visual cryptography scheme is proposed to generate two color shared images based on the carrier characteristics and copyright information. One shared image is used to generate a color zero-watermark, and the other is used for copyright authentication phase. Experimental results show that this algorithm has strong robustness and stability in resisting large-scale noise attacks, filtering attacks, JPEG compression, cropping attacks, and translation attacks at different positions. Compared with similar zero-watermarking algorithms, the robust performance is improved by about 10%, and it can adapt to more complex network environments.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8285
Author(s):  
José Miguel Fuster ◽  
Sergio Pérez-López ◽  
Pilar Candelas

In this work, we develop a new design method based on fast Fourier transform (FFT) for implementing zone plates (ZPs) with bifocal focusing profiles. We show that the FFT of the governing binary sequence provides a discrete sequence of the same length, which indicates the location of the main foci at the ZP focusing profile. Then, using reverse engineering and establishing a target focusing profile, we are capable of generating a binary sequence that provides a ZP with the desired focusing profile. We show that this design method, based on the inverse fast Fourier transform (IFFT), is very flexible and powerful and allows to tailor the design of bifocal ZPs to achieve focusing profiles with the desired foci locations and resolutions. The key advantage of our design algorithm, compared to other alternatives presented in previous works, is that our method provides bifocal focusing profiles with an absolute control of the foci locations. Moreover, although we analyze the performance of this novel design algorithm for underwater ultrasonics, it can also be successfully extended to different fields of physics, such as optics or microwaves, where ZPs are widely employed.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Ahmad Al Cheikha ◽  
Diana Mokayes

In the current time there is an important problem that is for a received linear or nonlinear binary sequence {zn} how we can find the nonlinear feedback shift register and its linear equivalent which generate this sequence. The linear orthogonal sequences, special M-Sequences, play a big role in these methods for solving this problem. In the current research trying give illuminations about the methods which are very useful for solving this problem under short sequences, and study these methods for finding the nonlinear feedback shift register of a multiplication sequence and its linear equivalent feedback shift register of a received multiplication binary sequence{zn} where the multiplication on h degrees of a binary linear sequence {an}, or finding the equivalent linear feedback shift register of {zn}, where the sequence {zn}of the form M-sequence, and these methods are very effectively. We can extend these methods for the large sequences using programming and modern computers with large memory.


2021 ◽  
Author(s):  
◽  
Michael McInerney

<p>This thesis establishes results in several different areas of computability theory.  The first chapter is concerned with algorithmic randomness. A well-known approach to the definition of a random infinite binary sequence is via effective betting strategies. A betting strategy is called integer-valued if it can bet only in integer amounts. We consider integer-valued random sets, which are infinite binary sequences such that no effective integer-valued betting strategy wins arbitrarily much money betting on the bits of the sequence. This is a notion that is much weaker than those normally considered in algorithmic randomness. It is sufficiently weak to allow interesting interactions with topics from classical computability theory, such as genericity and the computably enumerable degrees. We investigate the computational power of the integer-valued random sets in terms of standard notions from computability theory.  In the second chapter we extend the technique of forcing with bushy trees. We use this to construct an increasing ѡ-sequence 〈an〉 of Turing degrees which forms an initial segment of the Turing degrees, and such that each an₊₁ is diagonally noncomputable relative to an. This shows that the DNR₀ principle of reverse mathematics does not imply the existence of Turing incomparable degrees.   In the final chapter, we introduce a new notion of genericity which we call ѡ-change genericity. This lies in between the well-studied notions of 1- and 2-genericity. We give several results about the computational power required to compute these generics, as well as other results which compare and contrast their behaviour with that of 1-generics.</p>


2021 ◽  
Author(s):  
◽  
Michael McInerney

<p>This thesis establishes results in several different areas of computability theory.  The first chapter is concerned with algorithmic randomness. A well-known approach to the definition of a random infinite binary sequence is via effective betting strategies. A betting strategy is called integer-valued if it can bet only in integer amounts. We consider integer-valued random sets, which are infinite binary sequences such that no effective integer-valued betting strategy wins arbitrarily much money betting on the bits of the sequence. This is a notion that is much weaker than those normally considered in algorithmic randomness. It is sufficiently weak to allow interesting interactions with topics from classical computability theory, such as genericity and the computably enumerable degrees. We investigate the computational power of the integer-valued random sets in terms of standard notions from computability theory.  In the second chapter we extend the technique of forcing with bushy trees. We use this to construct an increasing ѡ-sequence 〈an〉 of Turing degrees which forms an initial segment of the Turing degrees, and such that each an₊₁ is diagonally noncomputable relative to an. This shows that the DNR₀ principle of reverse mathematics does not imply the existence of Turing incomparable degrees.   In the final chapter, we introduce a new notion of genericity which we call ѡ-change genericity. This lies in between the well-studied notions of 1- and 2-genericity. We give several results about the computational power required to compute these generics, as well as other results which compare and contrast their behaviour with that of 1-generics.</p>


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Robert Amelard ◽  
Eric T. Hedge ◽  
Richard L. Hughson

AbstractOxygen consumption ($$\dot{\,{{\mbox{V}}}}{{{\mbox{O}}}}_{2}$$ V ̇ O 2 ) provides established clinical and physiological indicators of cardiorespiratory function and exercise capacity. However, $$\dot{\,{{\mbox{V}}}}{{{\mbox{O}}}}_{2}$$ V ̇ O 2 monitoring is largely limited to specialized laboratory settings, making its widespread monitoring elusive. Here we investigate temporal prediction of $$\dot{\,{{\mbox{V}}}}{{{\mbox{O}}}}_{2}$$ V ̇ O 2 from wearable sensors during cycle ergometer exercise using a temporal convolutional network (TCN). Cardiorespiratory signals were acquired from a smart shirt with integrated textile sensors alongside ground-truth $$\dot{\,{{\mbox{V}}}}{{{\mbox{O}}}}_{2}$$ V ̇ O 2 from a metabolic system on 22 young healthy adults. Participants performed one ramp-incremental and three pseudorandom binary sequence exercise protocols to assess a range of $$\dot{\,{{\mbox{V}}}}{{{\mbox{O}}}}_{2}$$ V ̇ O 2 dynamics. A TCN model was developed using causal convolutions across an effective history length to model the time-dependent nature of $$\dot{\,{{\mbox{V}}}}{{{\mbox{O}}}}_{2}$$ V ̇ O 2 . Optimal history length was determined through minimum validation loss across hyperparameter values. The best performing model encoded 218 s history length (TCN-VO2 A), with 187, 97, and 76 s yielding <3% deviation from the optimal validation loss. TCN-VO2 A showed strong prediction accuracy (mean, 95% CI) across all exercise intensities (−22 ml min−1, [−262, 218]), spanning transitions from low–moderate (−23 ml min−1, [−250, 204]), low–high (14 ml min−1, [−252, 280]), ventilatory threshold–high (−49 ml min−1, [−274, 176]), and maximal (−32 ml min−1, [−261, 197]) exercise. Second-by-second classification of physical activity across 16,090 s of predicted $$\dot{\,{{\mbox{V}}}}{{{\mbox{O}}}}_{2}$$ V ̇ O 2 was able to discern between vigorous, moderate, and light activity with high accuracy (94.1%). This system enables quantitative aerobic activity monitoring in non-laboratory settings, when combined with tidal volume and heart rate reserve calibration, across a range of exercise intensities using wearable sensors for monitoring exercise prescription adherence and personal fitness.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7398
Author(s):  
Matthias Buchner ◽  
Krzysztof Rudion

Grid impedance is an important parameter and is used to perform impedance-based stability analysis for the operation of grid-connected systems, such as power electronics-interfaced solar, wind and other distributed power generation systems. The identification of grid impedance with the help of broadband signals is a popular method, but its robustness depends strongly on the harmonic disturbances caused by non-linear loads or power electronics. This paper provides an in-depth analysis of how harmonics affect the identification of grid impedance while using broadband measurements. Furthermore, a compensation method is proposed to remove the disturbing influences of harmonics on broadband impedance identification. This method is based on exploiting the properties of the used maximum-length binary sequence (MLBS). To explain the methodology of the proposed method, the design basis for the excitation signal is discussed in detail. The analysis from simulations and a real measurement in an industrial power grid shows the effectiveness of the proposed method in compensating the disturbing influences of harmonics on broadband impedance measurements.


Sign in / Sign up

Export Citation Format

Share Document