scholarly journals On the Bounded Sum-of-Digits Discrete Logarithm Problem in Finite Fields

Author(s):  
Qi Cheng
2014 ◽  
Vol 17 (A) ◽  
pp. 203-217 ◽  
Author(s):  
Christophe Petit

AbstractThe problem of solving polynomial equations over finite fields has many applications in cryptography and coding theory. In this paper, we consider polynomial equations over a ‘large’ finite field with a ‘small’ characteristic. We introduce a new algorithm for solving this type of equations, called the successive resultants algorithm (SRA). SRA is radically different from previous algorithms for this problem, yet it is conceptually simple. A straightforward implementation using Magma was able to beat the built-in Roots function for some parameters. These preliminary results encourage a more detailed study of SRA and its applications. Moreover, we point out that an extension of SRA to the multivariate case would have an important impact on the practical security of the elliptic curve discrete logarithm problem in the small characteristic case.Supplementary materials are available with this article.


2002 ◽  
Vol 5 ◽  
pp. 127-174 ◽  
Author(s):  
Markus Maurer ◽  
Alfred Menezes ◽  
Edlyn Teske

AbstractIn this paper, the authors analyze the Gaudry-Hess-Smart (GHS) Weil descent attack on the elliptic curve discrete logarithm problem (ECDLP) for elliptic curves defined over characteristic two finite fields of composite extension degree. For each such field F2N, where N is in [100,600], elliptic curve parameters are identified such that: (i) there should exist a cryptographically interesting elliptic curve E over F2N with these parameters; and (ii) the GHS attack is more efficient for solving the ECDLP in E(F2N) than for solving the ECDLP on any other cryptographically interesting elliptic curve over F2N. The feasibility of the GHS attack on the specific elliptic curves is examined over F2176, F2208, F2272, F2304 and F2368, which are provided as examples in the ANSI X9.62 standard for the elliptic curve signature scheme ECDSA. Finally, several concrete instances are provided of the ECDLP over F2N, N composite, of increasing difficulty; these resist all previously known attacks, but are within reach of the GHS attack.


2009 ◽  
Vol 9 (7&8) ◽  
pp. 610-621
Author(s):  
D. Maslov ◽  
J. Mathew ◽  
D. Cheung ◽  
D.K. Pradhan

We consider a quantum polynomial-time algorithm which solves the discrete logarithm problem for points on elliptic curves over $GF(2^m)$. We improve over earlier algorithms by constructing an efficient circuit for multiplying elements of binary finite fields and by representing elliptic curve points using a technique based on projective coordinates. The depth of our proposed implementation, executable in the Linear Nearest Neighbor (LNN) architecture, is $O(m^2)$, which is an improvement over the previous bound of $O(m^3)$ derived assuming no architectural restrictions.


2014 ◽  
Vol 17 (A) ◽  
pp. 230-246 ◽  
Author(s):  
Razvan Barbulescu ◽  
Cécile Pierrot

AbstractIn this paper we study the discrete logarithm problem in medium- and high-characteristic finite fields. We propose a variant of the number field sieve (NFS) based on numerous number fields. Our improved algorithm computes discrete logarithms in $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\mathbb{F}_{p^n}$ for the whole range of applicability of the NFS and lowers the asymptotic complexity from $L_{p^n}({1/3},({128/9})^{1/3})$ to $L_{p^n}({1/3},(2^{13}/3^6)^{1/3})$ in the medium-characteristic case, and from $L_{p^n}({1/3},({64/9})^{1/3})$ to $L_{p^n}({1/3},((92 + 26 \sqrt{13})/27)^{1/3})$ in the high-characteristic case.


2016 ◽  
Vol 19 (A) ◽  
pp. 332-350 ◽  
Author(s):  
Pierrick Gaudry ◽  
Laurent Grémy ◽  
Marion Videau

In order to assess the security of cryptosystems based on the discrete logarithm problem in non-prime finite fields, as are the torus-based or pairing-based ones, we investigate thoroughly the case in$\mathbb{F}_{p^{6}}$with the number field sieve. We provide new insights, improvements, and comparisons between different methods to select polynomials intended for a sieve in dimension 3 using a special-$\mathfrak{q}$strategy. We also take into account the Galois action to increase the relation productivity of the sieving phase. To validate our results, we ran several experiments and real computations for various polynomial selection methods and field sizes with our publicly available implementation of the sieve in dimension 3, with special-$\mathfrak{q}$and various enumeration strategies.


Sign in / Sign up

Export Citation Format

Share Document