The Laplacian with Generalized Wentzell Boundary Conditions

Author(s):  
Angelo Favini ◽  
Gisèle Ruiz Goldstein ◽  
Jerome A. Goldstein ◽  
Enrico Obrecht ◽  
Silvia Romanelli

2021 ◽  
Author(s):  
Tim Binz

AbstractWe consider the Dirichlet-to-Neumann operator associated to a strictly elliptic operator on the space $$\mathrm {C}(\partial M)$$ C ( ∂ M ) of continuous functions on the boundary $$\partial M$$ ∂ M of a compact manifold $$\overline{M}$$ M ¯ with boundary. We prove that it generates an analytic semigroup of angle $$\frac{\pi }{2}$$ π 2 , generalizing and improving a result of Escher with a new proof. Combined with the abstract theory of operators with Wentzell boundary conditions developed by Engel and the author, this yields that the corresponding strictly elliptic operator with Wentzell boundary conditions generates a compact and analytic semigroups of angle $$\frac{\pi }{2}$$ π 2 on the space $$\mathrm {C}(\overline{M})$$ C ( M ¯ ) .



2008 ◽  
Vol 3 (7) ◽  
pp. 143-147 ◽  
Author(s):  
A. Favini ◽  
G. R. Goldstein ◽  
J. A. Goldstein ◽  
S. Romanelli


2003 ◽  
Vol 3 (2) ◽  
pp. 321-331 ◽  
Author(s):  
Jin Liang ◽  
Rainer Nagel ◽  
Ti-Jun Xiao






Author(s):  
Angelo Favini ◽  
Ciprian G. Gal ◽  
Gisèle Ruiz Goldstein ◽  
Jerome A. Goldstein ◽  
Silvia Romanelli

We study the problem of the well-posedness for the abstract Cauchy problem associated to the non-autonomous one-dimensional wave equation utt = A(t)u with general Wentzell boundary conditions Here A(t)u := (a(x, t)ux)x, a(x, t) ≥ ε > 0 in [0, 1] × [0, + ∞) and βj(t) > 0, γj(t) ≥ 0, (γ0(t), γ1(t)) ≠ (0,0). Under suitable regularity conditions on a, βj, γj we prove the well-posedness in a suitable (energy) Hilbert space



2003 ◽  
Vol 82 (9) ◽  
pp. 927-935 ◽  
Author(s):  
Angelo Favini ◽  
Gisèle Ruiz Goldstein ◽  
Jerome A. Goldstein ◽  
Enrico Obrecht ◽  
Silvia Romanelli


Sign in / Sign up

Export Citation Format

Share Document