Coefficient Inequalities

Author(s):  
Marvin Rosenblum ◽  
James Rovnyak
2020 ◽  
Vol 70 (4) ◽  
pp. 829-838
Author(s):  
Saqib Hussain ◽  
Shahid Khan ◽  
Khalida Inayat Noor ◽  
Mohsan Raza

AbstractIn this paper, we are mainly interested to study the generalization of typically real functions in the unit disk. We study some coefficient inequalities concerning this class of functions. In particular, we find the Zalcman conjecture for generalized typically real functions.


2020 ◽  
Vol 70 (3) ◽  
pp. 599-604
Author(s):  
Şahsene Altinkaya

AbstractIn this present investigation, we will concern with the family of normalized analytic error function which is defined by$$\begin{array}{} \displaystyle E_{r}f(z)=\frac{\sqrt{\pi z}}{2}\text{er} f(\sqrt{z})=z+\overset{\infty }{\underset {n=2}{\sum }}\frac{(-1)^{n-1}}{(2n-1)(n-1)!}z^{n}. \end{array}$$By making the use of the trigonometric polynomials Un(p, q, eiθ) as well as the rule of subordination, we introduce several new classes that consist of 𝔮-starlike and 𝔮-convex error functions. Afterwards, we derive some coefficient inequalities for functions in these classes.


2020 ◽  
Vol 53 (1) ◽  
pp. 27-37
Author(s):  
Sa’adatul Fitri ◽  
Derek K. Thomas ◽  
Ratno Bagus Edy Wibowo ◽  

AbstractLet f be analytic in {\mathbb{D}}=\{z:|z\mathrm{|\hspace{0.17em}\lt \hspace{0.17em}1\}} with f(z)=z+{\sum }_{n\mathrm{=2}}^{\infty }{a}_{n}{z}^{n}, and for α ≥ 0 and 0 < λ ≤ 1, let { {\mathcal B} }_{1}(\alpha ,\lambda ) denote the subclass of Bazilevič functions satisfying \left|f^{\prime} (z){\left(\frac{z}{f(z)}\right)}^{1-\alpha }-1\right|\lt \lambda for 0 < λ ≤ 1. We give sharp bounds for various coefficient problems when f\in { {\mathcal B} }_{1}(\alpha ,\lambda ), thus extending recent work in the case λ = 1.


2017 ◽  
Vol 2017 ◽  
pp. 1-7
Author(s):  
Saqib Hussain ◽  
Akhter Rasheed ◽  
Muhammad Asad Zaighum ◽  
Maslina Darus

We investigate some subclasses ofk-uniformly convex andk-uniformly starlike functions in open unit disc, which is generalization of class of convex and starlike functions. Some coefficient inequalities, a distortion theorem, the radii of close-to-convexity, and starlikeness and convexity for these classes of functions are studied. The behavior of these classes under a certain modified convolution operator is also discussed.


2018 ◽  
Vol 37 (4) ◽  
pp. 83-95
Author(s):  
Trailokya Panigrahi ◽  
Janusz Sokól

In this paper, a new subclass of analytic functions ML_{\lambda}^{*}  associated with the right half of the lemniscate of Bernoulli is introduced. The sharp upper bound for the Fekete-Szego functional |a_{3}-\mu a_{2}^{2}|  for both real and complex \mu are considered. Further, the sharp upper bound to the second Hankel determinant |H_{2}(1)| for the function f in the class ML_{\lambda}^{*} using Toeplitz determinant is studied. Relevances of the main results are also briefly indicated.


2011 ◽  
Vol 2011 ◽  
pp. 1-10
Author(s):  
Hesam Mahzoon

We introduce and study certain subclasses of analytic functions which are defined by differential subordination. Coefficient inequalities, some properties of neighborhoods, distortion and covering theorems, radius of starlikeness, and convexity for these subclasses are given.


Author(s):  
Fatma Sağsöz ◽  
Halit Orhan

In this investigation, we introduce and study two new subclasses of bi-univalent functions defined by using the function [Formula: see text] and Salagean differential operator. Furthermore, we find estimates on the coefficients [Formula: see text] and [Formula: see text] for these function classes.


1981 ◽  
Vol 24 (3) ◽  
pp. 347-350
Author(s):  
Lawrence A. Harris

AbstractA Hausdorff-Young theorem is given for Lp-valued analytic functions on the open unit disc and estimates on such functions and their derivatives are deduced.


Sign in / Sign up

Export Citation Format

Share Document