Strong Approximation and Generalized Lipschitz Classes

Author(s):  
László Leindler
2021 ◽  
Vol 37 (1) ◽  
pp. 95-103
Author(s):  
Da Sheng Wei

2021 ◽  
Vol 76 (2) ◽  
Author(s):  
Nursel Çetin ◽  
Danilo Costarelli ◽  
Gianluca Vinti

AbstractIn this paper, we establish quantitative estimates for nonlinear sampling Kantorovich operators in terms of the modulus of smoothness in the setting of Orlicz spaces. This general frame allows us to directly deduce some quantitative estimates of approximation in $$L^{p}$$ L p -spaces, $$1\le p<\infty $$ 1 ≤ p < ∞ , and in other well-known instances of Orlicz spaces, such as the Zygmung and the exponential spaces. Further, the qualitative order of approximation has been obtained assuming f in suitable Lipschitz classes. The above estimates achieved in the general setting of Orlicz spaces, have been also improved in the $$L^p$$ L p -case, using a direct approach suitable to this context. At the end, we consider the particular cases of the nonlinear sampling Kantorovich operators constructed by using some special kernels.


1981 ◽  
Vol 18 (2) ◽  
pp. 390-402 ◽  
Author(s):  
Peter Breuer

A strong approximation theorem is proved for some non-stationary complex-valued Gaussian processes and an explicit rate of convergence is achieved. The result answers a problem raised by S. Csörgő.


2012 ◽  
Vol 55 (10) ◽  
pp. 2159-2182
Author(s):  
ZhengYan Lin ◽  
YueXu Zhao

Sign in / Sign up

Export Citation Format

Share Document