An Efficient Image Encryption Scheme Based on ZUC Stream Cipher and Chaotic Logistic Map

Author(s):  
Hai Cheng ◽  
Chunguang Huang ◽  
Qun Ding ◽  
Shu-Chuan Chu
2018 ◽  
Vol 69 (2) ◽  
pp. 93-105 ◽  
Author(s):  
Jakub Oravec ◽  
Ján Turán ◽  
L’uboš Ovseník ◽  
Tomáš Huszaník

Abstract This paper describes an image encryption algorithm which utilizes chaotic logistic map. Values generated by this map are used in two steps of algorithm which shuffles image pixels and then changes their intensities. Design of the encryption scheme considers possibility of various attacks, such as statistical, differential or phase space reconstruction attacks. Robustness against last mentioned type of attacks is introduced by selective skipping of values generated by the map. This skipping depends on key entered by user. The paper also verifies properties of proposed algorithm by common measures and by set of statistical tests that examine randomness of computed encrypted images. Results are compared with other approaches and they are also briefly discussed.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Adelaïde Nicole Kengnou Telem ◽  
Colince Meli Segning ◽  
Godpromesse Kenne ◽  
Hilaire Bertrand Fotsin

A robust gray image encryption scheme using chaotic logistic map and artificial neural network (ANN) is introduced. In the proposed method, an external secret key is used to derive the initial conditions for the logistic chaotic maps which are employed to generate weights and biases matrices of the multilayer perceptron (MLP). During the learning process with the backpropagation algorithm, ANN determines the weight matrix of the connections. The plain image is divided into four subimages which are used for the first diffusion stage. The subimages obtained previously are divided into the square subimage blocks. In the next stage, different initial conditions are employed to generate a key stream which will be used for permutation and diffusion of the subimage blocks. Some security analyses such as entropy analysis, statistical analysis, and key sensitivity analysis are given to demonstrate the key space of the proposed algorithm which is large enough to make brute force attacks infeasible. Computing validation using experimental data with several gray images has been carried out with detailed numerical analysis, in order to validate the high security of the proposed encryption scheme.


2018 ◽  
Vol 11 (1) ◽  
pp. 15-25
Author(s):  
Jakub Oravec ◽  
Ján Turán ◽  
Ľuboš Ovseník

Abstract This paper proposes an image encryption algorithm which uses four scans of an image during the diffusion stage in order to achieve total diffusion between intensities of image pixels. The condition of total diffusion is fulfilled by a suitable combination of techniques of ciphertext chaining and plaintext related diffusion. The proposed encryption algorithm uses two stages which utilize chaotic logistic map for generation of pseudo-random sequences. The paper also briefly analyzes approaches described by other researchers and evaluates experimental results of the proposed solution by means of commonly used measures. Properties of our proposal regarding modifications of plain images prior to encryption or modifications of encrypted images prior to decryption are illustrated by two additional experiments. The obtained numeric results are compared with those achieved by other proposals and briefly discussed.


2021 ◽  
Vol 18 (5) ◽  
pp. 5427-5448
Author(s):  
Guodong Ye ◽  
◽  
Huishan Wu ◽  
Kaixin Jiao ◽  
Duan Mei

Author(s):  
Sundararaman Rajagopalan ◽  
Siva Janakiraman ◽  
Amirtharajan Rengarajan

The healthcare industry has been facing a lot of challenges in securing electronic health records (EHR). Medical images have found a noteworthy position for diagnosis leading to therapeutic requirements. Millions of medical images of various modalities are generally safeguarded through software-based encryption. DICOM format is a widely used medical image type. In this chapter, DICOM image encryption implemented on cyclone FPGA and ARM microcontroller platforms is discussed. The methodology includes logistic map, DNA coding, and LFSR towards a balanced confusion – diffusion processes for encrypting 8-bit depth 256 × 256 resolution of DICOM images. For FPGA realization of this algorithm, the concurrency feature has been utilized by simultaneous processing of 128 × 128 pixel blocks which yielded a throughput of 79.4375 Mbps. Noticeably, the ARM controller which replicated this approach through sequential embedded “C” code took 1248 bytes in flash code memory and Cyclone IV FPGA consumed 21,870 logic elements for implementing the proposed encryption scheme with 50 MHz operating clock.


Sign in / Sign up

Export Citation Format

Share Document