scholarly journals A Simple and Robust Gray Image Encryption Scheme Using Chaotic Logistic Map and Artificial Neural Network

2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Adelaïde Nicole Kengnou Telem ◽  
Colince Meli Segning ◽  
Godpromesse Kenne ◽  
Hilaire Bertrand Fotsin

A robust gray image encryption scheme using chaotic logistic map and artificial neural network (ANN) is introduced. In the proposed method, an external secret key is used to derive the initial conditions for the logistic chaotic maps which are employed to generate weights and biases matrices of the multilayer perceptron (MLP). During the learning process with the backpropagation algorithm, ANN determines the weight matrix of the connections. The plain image is divided into four subimages which are used for the first diffusion stage. The subimages obtained previously are divided into the square subimage blocks. In the next stage, different initial conditions are employed to generate a key stream which will be used for permutation and diffusion of the subimage blocks. Some security analyses such as entropy analysis, statistical analysis, and key sensitivity analysis are given to demonstrate the key space of the proposed algorithm which is large enough to make brute force attacks infeasible. Computing validation using experimental data with several gray images has been carried out with detailed numerical analysis, in order to validate the high security of the proposed encryption scheme.

2013 ◽  
Vol 27 (31) ◽  
pp. 1350196 ◽  
Author(s):  
XING-YUAN WANG ◽  
FENG CHEN ◽  
TIAN WANG ◽  
DAHAI XU ◽  
YUTIAN MA

This paper offers two different attacks on a freshly proposed image encryption based on chaotic logistic map. The cryptosystem under study first uses a secret key of 80-bit and employed two chaotic logistic maps. We derived the initial conditions of the logistic maps from using the secret key by providing different weights to all its bits. Additionally, in this paper eight different types of procedures are used to encrypt the pixels of an image in the proposed encryption process of which one of them will be used for a certain pixel which is determined by the product of the logistic map. The secret key is revised after encrypting each block which consisted of 16 pixels of the image. The encrypting process have weakness, worst of which is that every byte of plaintext is independent when substituted, so the cipher text of the byte will not change even the other bytes have changed. As a result of weakness, a chosen plaintext attack and a chosen cipher text attack can be completed without any knowledge of the key value to recuperate the ciphered image.


Cryptography ◽  
2020 ◽  
pp. 39-47
Author(s):  
Sugandha Agarwal ◽  
O.P. Singh ◽  
Deepak Nagaria

In this world of Advanced Technology, the Biometrics are proved to be a significant method for user identification. However, the use of biometric is not new, but these days, with the increase in multimedia applications, it has gained its popularity in analysing human characteristics for security purposes. Biometric Encryption using Chaos Algorithm is a technique used to make it more convenient to the user and to provide high level security. The most prominent physical biometric patterns investigated for security purposes are the fingerprint, hand, eye, face, and voice. In the proposed image encryption scheme, an external secret key of 160-bit is used. The initial conditions for the logistic map are derived using the external secret key. The results obtained through experimental analysis provide an efficient and secure way for real-time image encryption and transmission.


Author(s):  
Somayeh Ezadi ◽  
Tofigh Allahviranloo

This paper aims to solve the celebrated Fuzzy Fractional Differential Equations (FFDE) using an Artificial Neural Network (ANN) technique. Compared to the integer order differential equation, the proposed FFDE can better describe several real application problems of various physical systems. To accomplish the aforementioned aim, the error back propagation algorithm and a multi-layer feed forward neural architecture are utilized using the unsupervised learning in order to minimize the error function as well as the modification of the parameters such as weights and biases. By combining the initial conditions with the ANN, output provides an appropriate approximate solution of the proposed FFDE. Then, two illustrative examples are solved to confirm the applicability of the concept as well as to demonstrate both the precision and effectiveness of the developed method. By comparing with some traditional methods, the obtained results reveals a close match that confirms both accuracy and correctness of the proposed method.


2018 ◽  
Vol 69 (2) ◽  
pp. 93-105 ◽  
Author(s):  
Jakub Oravec ◽  
Ján Turán ◽  
L’uboš Ovseník ◽  
Tomáš Huszaník

Abstract This paper describes an image encryption algorithm which utilizes chaotic logistic map. Values generated by this map are used in two steps of algorithm which shuffles image pixels and then changes their intensities. Design of the encryption scheme considers possibility of various attacks, such as statistical, differential or phase space reconstruction attacks. Robustness against last mentioned type of attacks is introduced by selective skipping of values generated by the map. This skipping depends on key entered by user. The paper also verifies properties of proposed algorithm by common measures and by set of statistical tests that examine randomness of computed encrypted images. Results are compared with other approaches and they are also briefly discussed.


Sign in / Sign up

Export Citation Format

Share Document