Effective Skyline Query Execution in Wireless Broadcast Environments

Author(s):  
Chuan-Ming Liu ◽  
Kai-An Yu
2008 ◽  
Vol 19 (6) ◽  
pp. 1386-1400 ◽  
Author(s):  
Xiao-Juan WEI

Author(s):  
Xichen Zhang ◽  
Rongxing Lu ◽  
Jun Shao ◽  
Hui Zhu ◽  
Ali A. Ghorbani

2014 ◽  
Vol 981 ◽  
pp. 175-178
Author(s):  
Run Tao Liu ◽  
Yuan Jing Chen ◽  
Da Yong Cao ◽  
De Yu Liu

In this paper, the index structure, PR-quadtree for spatial data, is used to store data for a database. The properties of the quadtree are studied. With the properties prunning rules are set up for searching the Skyline set of the data stored in the quadtree. Through detailed analysis for the tree the method of finding some approximate skyline points is designed, by which a new skyline searching algorithm is given. The new algorithm is more effective.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Sara Migliorini ◽  
Alberto Belussi ◽  
Elisa Quintarelli ◽  
Damiano Carra

AbstractThe MapReduce programming paradigm is frequently used in order to process and analyse a huge amount of data. This paradigm relies on the ability to apply the same operation in parallel on independent chunks of data. The consequence is that the overall performances greatly depend on the way data are partitioned among the various computation nodes. The default partitioning technique, provided by systems like Hadoop or Spark, basically performs a random subdivision of the input records, without considering the nature and correlation between them. Even if such approach can be appropriate in the simplest case where all the input records have to be always analyzed, it becomes a limit for sophisticated analyses, in which correlations between records can be exploited to preliminarily prune unnecessary computations. In this paper we design a context-based multi-dimensional partitioning technique, called CoPart, which takes care of data correlation in order to determine how records are subdivided between splits (i.e., units of work assigned to a computation node). More specifically, it considers not only the correlation of data w.r.t. contextual attributes, but also the distribution of each contextual dimension in the dataset. We experimentally compare our approach with existing ones, considering both quality criteria and the query execution times.


Sign in / Sign up

Export Citation Format

Share Document