processing technology
Recently Published Documents





Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 140
Wei Jiang ◽  
Wenxiang Zhao ◽  
Tianfeng Zhou ◽  
Liang Wang ◽  
Tianyang Qiu

Percutaneous coronary intervention (PCI) with stent implantation is one of the most effective treatments for cardiovascular diseases (CVDs). However, there are still many complications after stent implantation. As a medical device with a complex structure and small size, the manufacture and post-processing technology greatly impact the mechanical and medical performances of stents. In this paper, the development history, material, manufacturing method, and post-processing technology of vascular stents are introduced. In particular, this paper focuses on the existing manufacturing technology and post-processing technology of vascular stents and the impact of these technologies on stent performance is described and discussed. Moreover, the future development of vascular stent manufacturing technology will be prospected and proposed.

2022 ◽  
Vol 22 (1) ◽  
Yunhong Wang ◽  
Weihan Qin ◽  
Yujie Yang ◽  
Hui Bai ◽  
Jirui Wang ◽  

Abstract Background The present study intends to optimize the processing technology for the wine-processing of Rhizoma Coptidis, using alkaloids as indicators. Method In the present study, the Box–Behnken design method was adopted to optimize the processing technology for Rhizoma Coptidis, using the alkaloid component quantities as the index. 100 g of Rhizoma Coptidis slices and 12.5 g of Rhizoma Coptidis wine were used. After full mixing, box-Behnken design method was used to optimize the processing time, processing temperature and processing time of coptis chinensis by taking alkaloid content as index. After mixing well, these components were fried in a container at 125 °C for 6 min and exhibited good parallelism. Results The content of alkaloids in coptis chinensis was the highest after roasting at 125 °C for 6 min. The characteristic components were berberine hydrochloride, and the relative content was about 15.96%. And showed good parallelism. The effective components of Rhizoma Coptidis were primarily alkaloids. Conclusion The optimized processing technology for Rhizoma Coptidis is good.

Yun-Hao Peng ◽  
Dai-Hua Wang ◽  
Lian-Kai Tang

Parametric simulation of multi-chamber piezoelectric pump proposed by authors shows that its flow rate is positively correlated with chamber compression ratio when height of chamber wall is not less than central deflection of circular piezoelectric unimorph actuator (CPUA). Therefore, in this paper, principle and structure of multi-chamber piezoelectric pump with novel CPUAs with three-layer structure are proposed and realized, so as to improve its chamber compression ratio, and then improve its flow rate. Its processing technology compatible with PCB processing technology is studied and its flow rate model is established. Central deflection of CPUA with three-layer structure and the flow rate characteristics are tested. Experimental results show that when the central deflection of CPUA with three-layer structure reaches the maximum value of 106.8 μm, the chamber compression ratio and flow rate of multi-chamber piezoelectric pump reach the maximum value of 50% and 3.11 mL/min, respectively. The maximum flow rate is increased by 622% compared to unimproved pump. By comparing experimental results with numerical and finite element simulation results, the realized multi-chamber piezoelectric pump has large flow rate and the established flow rate model can predict its flow rate.

Crystals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 63
Xiangcao Jiang ◽  
Jiupeng Song ◽  
Fusheng Peng ◽  
Donghong Guo ◽  
Yijin Fang ◽  

Tungsten (W) fiber-reinforced tungsten (Wf/W) composite with ultra-high strength and high-temperature resistance is considered an attractive candidate material for plasma-facing materials (PFM) in future fusion reactors. The main component of Wf/W composite is tungsten wire, which is obtained through powder metallurgy and the drawing process. In this paper, high potassium (K)-doped tungsten wires with 98 ppm of K and 61 ppm of impurities are prepared using traditional and optimized processing technologies, respectively, and a comparative study with conventional K-doped tungsten wires with 83 ppm of K and 80 ppm of impurities is conducted. The high-temperature mechanical properties as well as the microstructure’s evolution of the prepared tungsten wires are investigated. The results show that the high-temperature performance of K-doped tungsten wires is improved by increasing the K content and by simultaneously reducing the impurities. By adopting small compression deformation and low-temperature processing technology, the high-temperature performance of high K-doped tungsten wires can be further improved. A microstructure analysis indicates that the excellent high-temperature performance is attributed to a combination of the small K bubble size, high K bubble number density, and long K bubble string, which are produced through optimization of the processing technology. A study on the processing technology and the performance of tungsten wires with a high K content and a high purity can provide important information regarding Wf/W composites.

Sign in / Sign up

Export Citation Format

Share Document