An Efficient Scheduling of HPC Applications on Geographically Distributed Cloud Data Centers

Author(s):  
Aboozar Rajabi ◽  
Hamid Reza Faragardi ◽  
Thomas Nolte
2020 ◽  
Vol 138 ◽  
pp. 15-31 ◽  
Author(s):  
Yashwant Singh Patel ◽  
Aditi Page ◽  
Manvi Nagdev ◽  
Anurag Choubey ◽  
Rajiv Misra ◽  
...  

2019 ◽  
Vol 9 (17) ◽  
pp. 3550 ◽  
Author(s):  
A-Young Son ◽  
Eui-Nam Huh

With the rapid increase in the development of the cloud data centers, it is expected that massive data will be generated, which will decrease service response time for the cloud data centers. To improve the service response time, distributed cloud computing has been designed and researched for placement and migration from mobile devices close to edge servers that have secure resource computing. However, most of the related studies did not provide sufficient service efficiency for multi-objective factors such as energy efficiency, resource efficiency, and performance improvement. In addition, most of the existing approaches did not consider various metrics. Thus, to maximize energy efficiency, maximize performance, and reduce costs, we consider multi-metric factors by combining decision methods, according to user requirements. In order to satisfy the user’s requirements based on service, we propose an efficient service placement system named fuzzy- analytical hierarchical process and then analyze the metric that enables the decision and selection of a machine in the distributed cloud environment. Lastly, using different placement schemes, we demonstrate the performance of the proposed scheme.


Author(s):  
Atefeh Khosravi ◽  
Rajkumar Buyya

Cloud computing provides on-demand access to computing resources for users across the world. It offers services on a pay-as-you-go model through data center sites that are scattered across diverse geographies. However, cloud data centers consume huge amount of electricity and leave high amount of carbon footprint in the ecosystem. This makes data centers responsible for 2% of the global CO2 emission. Therefore, having energy and carbon-efficient techniques for resource management in distributed cloud data centers is inevitable. This chapter presents a taxonomy and classifies the existing research works based on their target system, objective, and the technique they use for resource management in achieving a green cloud computing environment. Finally, it discusses how each work addresses the issue of energy and carbon-efficiency and also provides an insight into future directions.


Sign in / Sign up

Export Citation Format

Share Document