Energy Expression of the Chemical Bond Between Atoms in Hydrides and Oxides and Its Application to Materials Design

Author(s):  
Masahiko Morinaga ◽  
Hiroshi Yukawa ◽  
Hiromi Nakai
2011 ◽  
Vol 72 (7) ◽  
pp. 853-861 ◽  
Author(s):  
Yoshifumi Shinzato ◽  
Yuki Saito ◽  
Masahito Yoshino ◽  
Hiroshi Yukawa ◽  
Masahiko Morinaga ◽  
...  

1989 ◽  
Vol 86 ◽  
pp. 853-859 ◽  
Author(s):  
Federico Moscardó ◽  
José Pérez-Jordá ◽  
Emilio San-Fabián

1993 ◽  
Vol 90 ◽  
pp. 275-280 ◽  
Author(s):  
B Sundman
Keyword(s):  

2020 ◽  
Author(s):  
Gabriel Freire Sanzovo Fernandes ◽  
Leonardo dos Anjos Cunha ◽  
Francisco Bolivar Correto Machado ◽  
Luiz Ferrão

<p>Chemical bond plays a central role in the description of the physicochemical properties of molecules and solids and it is essential to several fields in science and engineering, governing the material’s mechanical, electrical, catalytic and optoelectronic properties, among others. Due to this indisputable importance, a proper description of chemical bond is needed, commonly obtained through solving the Schrödinger equation of the system with either molecular orbital theory (molecules) or band theory (solids). However, connecting these seemingly different concepts is not a straightforward task for students and there is a gap in the available textbooks concerning this subject. This work presents a chemical content to be added in the physical chemistry undergraduate courses, in which the framework of molecular orbitals was used to qualitatively explain the standard state of the chemical elements and some properties of the resulting material, such as gas or crystalline solids. Here in Part 1, we were able to show the transition from Van der Waals clusters to metal in alkali and alkaline earth systems. In Part 2 and 3 of this three-part work, the present framework is applied to main group elements and transition metals. The original content discussed here can be adapted and incorporated in undergraduate and graduate physical chemistry and/or materials science textbooks and also serves as a conceptual guide to subsequent disciplines such as quantum chemistry, quantum mechanics and solid-state physics.</p>


2019 ◽  
Author(s):  
Meifeng Wang ◽  
Liyin Zhang ◽  
Yiqun Li ◽  
Liuqun Gu

<p></p>Anomerization of glycosides were rarely performed under basic condition due to lack of efficiency. Here an imidazole promoted anomerization of β-D-glucose pentaacetate was developed; and reaction could proceed in both organic solvents and solid state at room temperature. Although mechanism is not yet clear, this unprecedent mild anomerization in solid state may open a new promising way for stereoseletive anomerization of broad glucosides and materials design in the future..


Sign in / Sign up

Export Citation Format

Share Document