Big Data Mining or Turning Data Mining into Predictive Analytics from Large-Scale 3Vs Data: The Future Challenge for Knowledge Discovery

Author(s):  
Alfredo Cuzzocrea
2018 ◽  
Vol 7 (3.4) ◽  
pp. 13
Author(s):  
Gourav Bathla ◽  
Himanshu Aggarwal ◽  
Rinkle Rani

Data mining is one of the most researched fields in computer science. Several researches have been carried out to extract and analyse important information from raw data. Traditional data mining algorithms like classification, clustering and statistical analysis can process small scale of data with great efficiency and accuracy. Social networking interactions, business transactions and other communications result in Big data. It is large scale of data which is not in competency for traditional data mining techniques. It is observed that traditional data mining algorithms are not capable for storage and processing of large scale of data. If some algorithms are capable, then response time is very high. Big data have hidden information, if that is analysed in intelligent manner can be highly beneficial for business organizations. In this paper, we have analysed the advancement from traditional data mining algorithms to Big data mining algorithms. Applications of traditional data mining algorithms can be straight forward incorporated in Big data mining algorithm. Several studies have analysed traditional data mining with Big data mining, but very few have analysed most important algortihsm within one research work, which is the core motive of our paper. Readers can easily observe the difference between these algorthithms with  pros and cons. Mathemtics concepts are applied in data mining algorithms. Means and Euclidean distance calculation in Kmeans, Vectors application and margin in SVM and Bayes therorem, conditional probability in Naïve Bayes algorithm are real examples.  Classification and clustering are the most important applications of data mining. In this paper, Kmeans, SVM and Naïve Bayes algorithms are analysed in detail to observe the accuracy and response time both on concept and empirical perspective. Hadoop, Mapreduce etc. Big data technologies are used for implementing Big data mining algorithms. Performace evaluation metrics like speedup, scaleup and response time are used to compare traditional mining with Big data mining.  


Author(s):  
Tomas Ruzgas ◽  
Kristina Jakubėlienė ◽  
Aistė Buivytė

The article dealt with exploration methods and tools for big data. It identifies the challenges encountered in the analysis of big data. Defined notion of big data. describe the technology for big data analysis. Article provides an overview of tools which are designed for big data analytics.


Sign in / Sign up

Export Citation Format

Share Document