Second Order Expansion for Implied Volatility in Two Factor Local Stochastic Volatility Models and Applications to the Dynamic $$\lambda $$ -Sabr Model

Author(s):  
Gérard Ben Arous ◽  
Peter Laurence
2021 ◽  
pp. 1-19
Author(s):  
XUHUI WANG ◽  
SHENG-JHIH WU ◽  
XINGYE YUE

Abstract We study the pricing of timer options in a class of stochastic volatility models, where the volatility is driven by two diffusions—one fast mean-reverting and the other slowly varying. Employing singular and regular perturbation techniques, full second-order asymptotics of the option price are established. In addition, we investigate an implied volatility in terms of effective maturity for the timer options, and derive its second-order expansion based on our pricing asymptotics. A numerical experiment shows that the price approximation formula has a high level of accuracy, and the implied volatility in terms of its effective maturity is illustrated.


2021 ◽  
Vol 63 ◽  
pp. 249-267
Author(s):  
Xuhui Wang ◽  
Sheng-Jhih Wu ◽  
Xingye Yue

We study the pricing of timer options in a class of stochastic volatility models, where the volatility is driven by two diffusions—one fast mean-reverting and the other slowly varying. Employing singular and regular perturbation techniques, full second-order asymptotics of the option price are established. In addition, we investigate an implied volatility in terms of effective maturity for the timer options, and derive its second-order expansion based on our pricing asymptotics. A numerical experiment shows that the price approximation formula has a high level of accuracy, and the implied volatility in terms of its effective maturity is illustrated. doi:10.1017/S1446181121000249


2020 ◽  
Vol 07 (04) ◽  
pp. 2050042
Author(s):  
T. Pellegrino

The aim of this paper is to derive a second-order asymptotic expansion for the price of European options written on two underlying assets, whose dynamics are described by multiscale stochastic volatility models. In particular, the second-order expansion of option prices can be translated into a corresponding expansion in implied correlation units. The resulting approximation for the implied correlation curve turns out to be quadratic in the log-moneyness, capturing the convexity of the implied correlation skew. Finally, we describe a calibration procedure where the model parameters can be estimated using option prices on individual underlying assets.


2008 ◽  
Vol 45 (04) ◽  
pp. 1071-1085
Author(s):  
L. C. G. Rogers ◽  
L. A. M. Veraart

We present two new stochastic volatility models in which option prices for European plain-vanilla options have closed-form expressions. The models are motivated by the well-known SABR model, but use modified dynamics of the underlying asset. The asset process is modelled as a product of functions of two independent stochastic processes: a Cox-Ingersoll-Ross process and a geometric Brownian motion. An application of the models to options written on foreign currencies is studied.


Sign in / Sign up

Export Citation Format

Share Document