scholarly journals A Finite Representation of the Narrowing Space

Author(s):  
Naoki Nishida ◽  
Germán Vidal
2021 ◽  
Vol 82 (2) ◽  
Author(s):  
Robin Hirsch ◽  
Jaš Šemrl

AbstractThe motivation for using demonic calculus for binary relations stems from the behaviour of demonic turing machines, when modelled relationally. Relational composition (; ) models sequential runs of two programs and demonic refinement ($$\sqsubseteq $$ ⊑ ) arises from the partial order given by modeling demonic choice ($$\sqcup $$ ⊔ ) of programs (see below for the formal relational definitions). We prove that the class $$R(\sqsubseteq , ;)$$ R ( ⊑ , ; ) of abstract $$(\le , \circ )$$ ( ≤ , ∘ ) structures isomorphic to a set of binary relations ordered by demonic refinement with composition cannot be axiomatised by any finite set of first-order $$(\le , \circ )$$ ( ≤ , ∘ ) formulas. We provide a fairly simple, infinite, recursive axiomatisation that defines $$R(\sqsubseteq , ;)$$ R ( ⊑ , ; ) . We prove that a finite representable $$(\le , \circ )$$ ( ≤ , ∘ ) structure has a representation over a finite base. This appears to be the first example of a signature for binary relations with composition where the representation class is non-finitely axiomatisable, but where the finite representation property holds for finite structures.


2018 ◽  
Vol 62 (1) ◽  
pp. 291-304
Author(s):  
Dave Benson ◽  
Zinovy Reichstein

AbstractWe examine situations, where representations of a finite-dimensionalF-algebraAdefined over a separable extension fieldK/F, have a unique minimal field of definition. Here the base fieldFis assumed to be a field of dimension ≼1. In particular,Fcould be a finite field ork(t) ork((t)), wherekis algebraically closed. We show that a unique minimal field of definition exists if (a)K/Fis an algebraic extension or (b)Ais of finite representation type. Moreover, in these situations the minimal field of definition is a finite extension ofF. This is not the case ifAis of infinite representation type orFfails to be of dimension ≼1. As a consequence, we compute the essential dimension of the functor of representations of a finite group, generalizing a theorem of Karpenko, Pevtsova and the second author.


1987 ◽  
Vol 15 (1-2) ◽  
pp. 377-424 ◽  
Author(s):  
Kiyoshi Igusa ◽  
Maria-Ines Platzeck ◽  
Gordana Todorov ◽  
Dan Zachana

2021 ◽  
Author(s):  
◽  
Aaron Armour

<p><b>The algebraic and geometric classification of k-algbras, of dimension fouror less, was started by Gabriel in “Finite representation type is open” [12].</b></p> <p>Several years later Mazzola continued in this direction with his paper “Thealgebraic and geometric classification of associative algebras of dimensionfive” [21]. The problem we attempt in this thesis, is to extend the resultsof Gabriel to the setting of super (or Z2-graded) algebras — our main effortsbeing devoted to the case of superalgebras of dimension four. Wegive an algebraic classification for superalgebras of dimension four withnon-trivial Z2-grading. By combining these results with Gabriel’s we obtaina complete algebraic classification of four dimensional superalgebras.</p> <p>This completes the classification of four dimensional Yetter-Drinfeld modulealgebras over Sweedler’s Hopf algebra H4 given by Chen and Zhangin “Four dimensional Yetter-Drinfeld module algebras over H4” [9]. Thegeometric classification problem leads us to define a new variety, Salgn —the variety of n-dimensional superalgebras—and study some of its properties.</p> <p>The geometry of Salgn is influenced by the geometry of the varietyAlgn yet it is also more complicated, an important difference being thatSalgn is disconnected. While we make significant progress on the geometricclassification of four dimensional superalgebras, it is not complete. Wediscover twenty irreducible components of Salg4 — however there couldbe up to two further irreducible components.</p>


Author(s):  
Agustín Moreno Cañadas ◽  
Gabriel Bravo Rios ◽  
Hernán Giraldo

Categorification of some integer sequences are obtained by enumerating the number of sections in the Auslander–Reiten quiver of algebras of finite representation type.


2016 ◽  
Vol 48 (4) ◽  
pp. 589-600
Author(s):  
Jerzy Białkowski ◽  
Andrzej Skowroński

Sign in / Sign up

Export Citation Format

Share Document