binary relations
Recently Published Documents


TOTAL DOCUMENTS

569
(FIVE YEARS 91)

H-INDEX

25
(FIVE YEARS 2)

2022 ◽  
Vol 7 (2) ◽  
pp. 2891-2928
Author(s):  
Rukchart Prasertpong ◽  

<abstract><p>In the philosophy of rough set theory, the methodologies of rough soft sets and rough fuzzy sets have been being examined to be efficient mathematical tools to deal with unpredictability. The basic of approximations in rough set theory is based on equivalence relations. In the aftermath, such theory is extended by arbitrary binary relations and fuzzy relations for more wide approximation spaces. In recent years, the notion of picture hesitant fuzzy relations by Mathew et al. can be considered as a novel extension of fuzzy relations. Then this paper proposes extended approximations into rough soft sets and rough fuzzy sets from the viewpoint of its. We give corresponding examples to illustrate the correctness of such approximations. The relationships between the set-valued picture hesitant fuzzy relations with the upper (resp., lower) rough approximations of soft sets and fuzzy sets are investigated. Especially, it is shown that every non-rough soft set and non-rough fuzzy set can be induced by set-valued picture hesitant fuzzy reflexive relations and set-valued picture hesitant fuzzy antisymmetric relations. By processing the approximations and advantages in the new existing tools, some terms and products have been applied to semigroups. Then, we provide attractive results of upper (resp., lower) rough approximations of prime idealistic soft semigroups over semigroups and fuzzy prime ideals of semigroups induced by set-valued picture hesitant fuzzy relations on semigroups.</p></abstract>


2021 ◽  
pp. 560-566
Author(s):  
Vladimir Batsamut ◽  
Sviatoslav Manzura ◽  
Oleksandr Kosiak ◽  
Viacheslav Garmash ◽  
Dmytro Kukharets

The article proposes a fast algorithm for constructing the transitive closures between all pairs of nodes in the structure of a network object, which can have both directional and non-directional links. The algorithm is based on the disjunctive addition of the elements of certain rows of the adjacency matrix, which models (describe) the structure of the original network object. The article formulates and proves a theorem that using such a procedure, the matrix of transitive closures of a network object can be obtained from the adjacency matrix in two iterations (traversal) on such an array. An estimate of the asymptotic computational complexity of the proposed algorithm is substantiated. The article presents the results of an experimental study of the execution time of such an algorithm on network structures of different dimensions and with different connection densities. For this indicator, the developed algorithm is compared with the well-known approaches of Bellman, Warshall-Floyd, Shimbel, which can also be used to determine the transitive closures of binary relations of network objects. The corresponding graphs of the obtained dependences are given. The proposed algorithm (the logic embedded in it) can become the basis for solving problems of monitoring the connectivity of various subscribers in data transmission networks in real time when managing the load in such networks, where the time spent on routing information flows directly depends on the execution time of control algorithms, as well as when solving other problems on the network structures.


2021 ◽  
Author(s):  
Ivan Chajda ◽  
Helmut Länger

AbstractThe concept of a Sheffer operation known for Boolean algebras and orthomodular lattices is extended to arbitrary directed relational systems with involution. It is proved that to every such relational system, there can be assigned a Sheffer groupoid and also, conversely, every Sheffer groupoid induces a directed relational system with involution. Hence, investigations of these relational systems can be transformed to the treatment of special groupoids which form a variety of algebras. If the Sheffer operation is also commutative, then the induced binary relation is antisymmetric. Moreover, commutative Sheffer groupoids form a congruence distributive variety. We characterize symmetry, antisymmetry and transitivity of binary relations by identities and quasi-identities satisfied by an assigned Sheffer operation. The concepts of twist products of relational systems and of Kleene relational systems are introduced. We prove that every directed relational system can be embedded into a directed relational system with involution via the twist product construction. If the relation in question is even transitive, then the directed relational system can be embedded into a Kleene relational system. Any Sheffer operation assigned to a directed relational system $${\mathbf {A}}$$ A with involution induces a Sheffer operation assigned to the twist product of $${\mathbf {A}}$$ A .


Author(s):  
Catarina Carvalho ◽  
Barnaby Martin

We study the algebraic properties of binary relations whose underlying digraph is smooth, that is, has no source or sink. Such objects have been studied as surjective hyper-operations (shops) on the corresponding vertex set, and as binary relations that are defined everywhere and whose inverse is also defined everywhere. In the latter formulation, they have been called multipermutations. We study the lattice structure of sets (monoids) of multipermutations over an [Formula: see text]-element domain. Through a Galois connection, these monoids form the algebraic counterparts to sets of relations closed under definability in positive first-order logic without equality. We show one side of this Galois connection, and give a simple dichotomy theorem for the evaluation problem of positive first-order logic without equality on the class of structures whose preserving multipermutations form a monoid closed under inverse. These problems turn out either to be in [Formula: see text]or to be [Formula: see text]-complete. We go on to study the monoid of all multipermutations on an [Formula: see text]-element domain, under usual composition of relations. We characterize its Green relations, regular elements and show that it does not admit a generating set that is polynomial on [Formula: see text].


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Ashraf Nawar ◽  
E. A. Elsakhawy

Recently, the notions of right and left covering rough sets were constructed by right and left neighborhoods to propose four types of multigranulation covering rough set (MGCRS) models. These models were constructed using the granulations as equivalence relations. In this paper, we introduce four types of multigranulation covering rough set models under arbitrary relations using the q -minimal and q -maximal descriptors of objects in a given universe. We also study the properties of these new models. Thus, we explore the relationships between these models. Then, we put forward an algorithm to illustrate the method of reduction based on the presented model. Finally, we give an illustrative example to show its efficiency and importance.


Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2028
Author(s):  
Andrei Alexandru ◽  
Gabriel Ciobanu

In the framework of finitely supported atomic sets, by using the notion of atomic cardinality and the T-finite support principle (a closure property for supports in some higher-order constructions), we present some finiteness properties of the finitely supported binary relations between infinite atomic sets. Of particular interest are finitely supported Dedekind-finite sets because they do not contain finitely supported, countably infinite subsets. We prove that the infinite sets ℘fs(Ak×Al), ℘fs(Ak×℘m(A)), ℘fs(℘n(A)×Ak) and ℘fs(℘n(A)×℘m(A)) do not contain uniformly supported infinite subsets. Moreover, the functions space ZAm does not contain a uniformly supported infinite subset whenever Z does not contain a uniformly supported infinite subset. All these sets are Dedekind-finite in the framework of finitely supported structures.


Mathematics ◽  
2021 ◽  
Vol 9 (20) ◽  
pp. 2587
Author(s):  
Muhammad Zishan Anwar ◽  
Shahida Bashir ◽  
Muhammad Shabir ◽  
Majed G. Alharbi

Multigranulation rough set (MGRS) based on soft relations is a very useful technique to describe the objectives of problem solving. This MGRS over two universes provides the combination of multiple granulation knowledge in a multigranulation space. This paper extends the concept of fuzzy set Shabir and Jamal in terms of an intuitionistic fuzzy set (IFS) based on multi-soft binary relations. This paper presents the multigranulation roughness of an IFS based on two soft relations over two universes with respect to the aftersets and foresets. As a result, two sets of IF soft sets with respect to the aftersets and foresets are obtained. These resulting sets are called lower approximations and upper approximations with respect to the aftersets and with respect to the foresets. Some properties of this model are studied. In a similar way, we approximate an IFS based on multi-soft relations and discuss their some algebraic properties. Finally, a decision-making algorithm has been presented with a suitable example.


Author(s):  
Thanakorn Prinyasart ◽  
Jittisak Rakbud ◽  
Suchat Samphavat

In this paper, we introduce the notion of a solvable triple of binary relations on a set. This notion generalizes the notion of a regular relation and all other notions that are variants of the notion of the regularity, defined previously by many people. We also give some characterizations of the solvability of a triple of relations and use this to study Green’s relations on the monoid of binary relations on a set.


Mathematics ◽  
2021 ◽  
Vol 9 (18) ◽  
pp. 2275
Author(s):  
Radwan Abu-Gdairi ◽  
Mostafa A. El-Gayar ◽  
Mostafa K. El-Bably ◽  
Kamel K. Fleifel

Rough set philosophy is a significant methodology in the knowledge discovery of databases. In the present paper, we suggest new sorts of rough set approximations using a multi-knowledge base; that is, a family of the finite number of general binary relations via different methods. The proposed methods depend basically on a new neighborhood (called basic-neighborhood). Generalized rough approximations (so-called, basic-approximations) represent a generalization to Pawlak’s rough sets and some of their extensions as confirming in the present paper. We prove that the accuracy of the suggested approximations is the best. Many comparisons between these approaches and the previous methods are introduced. The main goal of the suggested techniques was to study the multi-information systems in order to extend the application field of rough set models. Thus, two important real-life applications are discussed to illustrate the importance of these methods. We applied the introduced approximations in a set-valued ordered information system in order to be accurate tools for decision-making. To illustrate our methods, we applied them to find the key foods that are healthy in nutrition modeling, as well as in the medical field to make a good decision regarding the heart attacks problem.


Author(s):  
Koen Claessen ◽  
Ann Lillieström

AbstractWe present a number of alternative ways of handling transitive binary relations that commonly occur in first-order problems, in particular equivalence relations, total orders, and transitive relations in general. We show how such relations can be discovered syntactically in an input theory, and how they can be expressed in alternative ways. We experimentally evaluate different such ways on problems from the TPTP, using resolution-based reasoning tools as well as instance-based tools. Our conclusions are that (1) it is beneficial to consider different treatments of binary relations as a user, and that (2) reasoning tools could benefit from using a preprocessor or even built-in support for certain types of binary relations.


Sign in / Sign up

Export Citation Format

Share Document