finite structures
Recently Published Documents


TOTAL DOCUMENTS

178
(FIVE YEARS 24)

H-INDEX

20
(FIVE YEARS 1)

2021 ◽  
Vol Volume 17, Issue 3 ◽  
Author(s):  
Julien Grange

We study the expressive power of successor-invariant first-order logic, which is an extension of first-order logic where the usage of an additional successor relation on the structure is allowed, as long as the validity of formulas is independent of the choice of a particular successor on finite structures. We show that when the degree is bounded, successor-invariant first-order logic is no more expressive than first-order logic.


2021 ◽  
Vol 27 (2) ◽  
pp. 223-223
Author(s):  
Tingxiang Zou

AbstractThe thesis pseudofinite structures and counting dimensions is about the model theory of pseudofinite structures with the focus on groups and fields. The aim is to deepen our understanding of how pseudofinite counting dimensions can interact with the algebraic properties of underlying structures and how we could classify certain classes of structures according to their counting dimensions. Our approach is by studying examples. We treat three classes of structures: The first one is the class of H-structures, which are generic expansions of existing structures. We give an explicit construction of pseudofinite H-structures as ultraproducts of finite structures. The second one is the class of finite difference fields. We study properties of coarse pseudofinite dimension in this class, show that it is definable and integer-valued and build a partial connection between this dimension and transformal transcendence degree. The third example is the class of pseudofinite primitive permutation groups. We generalise Hrushovski’s classical classification theorem for stable permutation groups acting on a strongly minimal set to the case where there exists an abstract notion of dimension, which includes both the classical model theoretic ranks and pseudofinite counting dimensions. In this thesis, we also generalise Schlichting’s theorem for groups to the case of approximate subgroups with a notion of commensurability.Abstract prepared by Tingxiang Zou.E-mail: [email protected]: https://tel.archives-ouvertes.fr/tel-02283810/document


2021 ◽  
Author(s):  
Mikhail Rybakov ◽  
Dmitry Shkatov

Abstract We obtain an effective embedding of the classical predicate logic into the logic of partial quasiary predicates. The embedding has the property that an image of a non-theorem of the classical logic is refutable in a model of the logic of partial quasiary predicates that has the same cardinality as the classical countermodel of the non-theorem. Therefore, we also obtain an embedding of the classical predicate logic of finite models into the logic of partial quasiary predicates over finite structures. As a consequence, we prove that the logic of partial quasiary predicates is undecidable—more precisely, $\varSigma ^0_1$-complete—over arbitrary structures and not recursively enumerable—more precisely, $\varPi ^0_1$-complete—over finite structures.


Author(s):  
Yu-Hsiang Hsu ◽  
Tsung-Yu Chu ◽  
Zi-Xun Lin ◽  
Chih-Kung Lee

Abstract In this study, we present a new driving method to generate traveling waves in a finite plate for the application of piezoelectric motorizations. Due to resonant modes which dominate the vibration of finite structures, methods to reduce resonant effects such as using an electric sinker or driving at a non-resonant frequency, have been reported. To take the advantage of natural resonance and to increase driving efficiency, a new method entitled a gated two-frequency-two-mode (G-TFTM) was developed. A piezoelectric bimorph of 1.1g weight with two rectangular actuators was implemented to verify the design concept. One actuator was operated at a first bending mode and the other actuator operated at a second bending mode with phase difference. The driving signal was gated to generate an intermittent excitation to provide a periodic propulsion. To determine the profile of the induced traveling wave, an analytical solution was derived and a numerical model was used. Using these design tools, we experimentally verified that traveling waves can be generated using a G-TFTM method. A 0.1 g object can be moved at a speed of 3.31 mm/s under the condition of a 70-to-20 voltage ratio and a 137-degree phase difference. The moving direction was found to be reversed by changing the phase to -43 degrees. The experimental and numerical data are detailed in this paper to demonstrate the feasibility of this G-TFTM method.


2021 ◽  
Vol 82 (2) ◽  
Author(s):  
Robin Hirsch ◽  
Jaš Šemrl

AbstractThe motivation for using demonic calculus for binary relations stems from the behaviour of demonic turing machines, when modelled relationally. Relational composition (; ) models sequential runs of two programs and demonic refinement ($$\sqsubseteq $$ ⊑ ) arises from the partial order given by modeling demonic choice ($$\sqcup $$ ⊔ ) of programs (see below for the formal relational definitions). We prove that the class $$R(\sqsubseteq , ;)$$ R ( ⊑ , ; ) of abstract $$(\le , \circ )$$ ( ≤ , ∘ ) structures isomorphic to a set of binary relations ordered by demonic refinement with composition cannot be axiomatised by any finite set of first-order $$(\le , \circ )$$ ( ≤ , ∘ ) formulas. We provide a fairly simple, infinite, recursive axiomatisation that defines $$R(\sqsubseteq , ;)$$ R ( ⊑ , ; ) . We prove that a finite representable $$(\le , \circ )$$ ( ≤ , ∘ ) structure has a representation over a finite base. This appears to be the first example of a signature for binary relations with composition where the representation class is non-finitely axiomatisable, but where the finite representation property holds for finite structures.


2020 ◽  
Vol 10 (21) ◽  
pp. 7767
Author(s):  
Hassan Aynaou ◽  
Abdelkader Mouadili ◽  
Noama Ouchani ◽  
El Houssaine El Boudouti ◽  
Abdellatif Akjouj ◽  
...  

We investigate both theoretically and experimentally the properties of electromagnetic waves propagation and localization in periodic and quasi-periodic stub structures of Fibonacci type. Each block constituting the Fibonacci sequence (FS) is composed of an horizontal segment and a vertical stub. The origin of the primary and secondary gaps shown in such systems is discussed. The behaviors and scattering properties of the electromagnetic modes are studied in two geometries, when the FS is inserted horizontally between two semi-infinite waveguides or grafted vertically along a guide. Typical properties of the Fibonacci systems such as the fragmentation of the frequency spectrum, the self-similarity following a scaling law are analyzed and discussed. It is found that certain modes inside these two geometries decrease according to a power law rather than an exponential law and the localization of these modes displays the property of self-similarity around the central gap frequency of the periodic structure where the quasi-periodicity is most effective. Also, the eigenmodes of the FS of different generation order are studied depending on the boundary conditions imposed on its extremities. It is shown that both geometries provide complementary information on the localization of the different modes inside the FS. In particular, in addition to bulk modes, some localized modes induced by both extremities of the system exhibit different behaviors depending on which surface they are localized. The theory is carried out using the Green’s function approach through an analysis of the dispersion relation, transmission coefficient and electric field distribution through such finite structures. The theoretical findings are in good agreement with the experimental results performed by measuring in the radio-frequency range the transmission along a waveguide in which the FS is inserted horizontally or grafted vertically.


2020 ◽  
Vol 66 (3) ◽  
pp. 367-372
Author(s):  
Akito Tsuboi
Keyword(s):  

2020 ◽  
Vol 30 (7) ◽  
pp. 1331-1355
Author(s):  
Nick Bezhanishvili ◽  
Tim Henke

Abstract The celebrated van Benthem characterization theorem states that on Kripke structures modal logic is the bisimulation-invariant fragment of first-order logic. In this paper, we prove an analogue of the van Benthem characterization theorem for models based on descriptive general frames. This is an important class of general frames for which every modal logic is complete. These frames can be represented as Stone spaces equipped with a ‘continuous’ binary relation. The proof of our theorem generalizes Rosen’s proof of the van Benthem theorem for finite frames and uses as an essential technique a new notion of descriptive unravelling. We also develop a basic model theory for descriptive general frames and show that in many ways it behaves like the model theory of finite structures. In particular, we prove the failure of the compactness theorem, of the Beth definability theorem, of the Craig interpolation theorem and of the upward Löwenheim–Skolem theorem.1


Sign in / Sign up

Export Citation Format

Share Document