scholarly journals Well Log Analysis by Global Optimization-based Interval Inversion Method

Author(s):  
Mihály Dobróka ◽  
Norbert Péter Szabó
2018 ◽  
Author(s):  
Gulnaz Minigalieva ◽  
Albina Nigmatzyanova ◽  
Tatyana Burikova ◽  
Olga Privalova ◽  
Ruslan Akhmetzyanov ◽  
...  

2018 ◽  
Author(s):  
Gulnaz Minigalieva ◽  
Albina Nigmatzyanova ◽  
Tatyana Burikova ◽  
Olga Privalova ◽  
Ruslan Akhmetzyanov ◽  
...  

2021 ◽  
pp. 1-42
Author(s):  
Maheswar Ojha ◽  
Ranjana Ghosh

The Indian National Gas Hydrate Program Expedition-01 in 2006 has discovered gas hydrate in Mahanadi offshore basin along the eastern Indian margin. However, well log analysis, pressure core measurements and Infra-Red (IR) anomalies reveal that gas hydrates are distributed as disseminated within the fine-grained sediment, unlike massive gas hydrate deposits in the Krishna-Godavari basin. 2D multi-channel seismic section, which crosses the Holes NGHP-01-9A and 19B located at about 24 km apart shows a continuous bottom-simulating reflector (BSR) along it. We aim to investigate the prospect of gas hydrate accumulation in this area by integrating well log analysis and seismic methods with rock physics modeling. First, we estimate gas hydrate saturation at these two Holes from the observed impedance using the three-phase Biot-type equation (TPBE). Then we establish a linear relationship between gas hydrate saturation and impedance contrast with respect to the water-saturated sediment. Using this established relation and impedance obtained from pre-stack inversion of seismic data, we produce a 2D gas hydrate-distribution image over the entire seismic section. Gas hydrate saturation estimated from resistivity and sonic data at well locations varies within 0-15%, which agrees well with the available pressure core measurements at Hole 19. However, the 2D map of gas hydrate distribution obtained from our method shows maximum gas hydrate saturation is about 40% just above the BSR between the CDP (common depth point) 1450 and 2850. The presence of gas-charged sediments below the BSR is one of the reasons for the strong BSR observed in the seismic section, which is depicted as low impedance in the inverted impedance section. Closed sedimentary structures above the BSR are probably obstructing the movements of free-gas upslope, for which we do not see the presence of gas hydrate throughout the seismic section above the BSR.


Author(s):  
Mihir K. Sinha ◽  
Larry R. Padgett

2017 ◽  
Author(s):  
Leili Moghadasi ◽  
Ehsan Ranaee ◽  
Fabio Inzoli ◽  
Alberto Guadagnini

Sign in / Sign up

Export Citation Format

Share Document