gulf of suez
Recently Published Documents


TOTAL DOCUMENTS

848
(FIVE YEARS 163)

H-INDEX

32
(FIVE YEARS 6)

2021 ◽  
Author(s):  
Mohamed Ameen ◽  
Eslam Atwa ◽  
Youssif Youssif ◽  
Emad Abdel Hakim ◽  
Mohamed Farouk ◽  
...  

Abstract For more than 40 years, pulsed neutron spectroscopy has been primarily used in reservoir management to determine hydrocarbon saturation profiles, tracking reservoir depletion, and planning workover activities to diagnose production problems such as water influx. Legacy pulsed neutron tools used to provide this information for more than four decades, but they were challenged when a mixed lithology reservoir is encountered, complex completions, unknown borehole conditions, and poor cement integrity in cased boreholes. This paper presents two successful field examples and applications using the advanced slim pulsed neutron spectroscopy to precisely determine multiphase contacts in a complex geological structure, provide current hydrocarbon saturation independent of the quality of cement behind the casing, and identifying bypassed hydrocarbon. This was of paramount importance in understanding current reservoir fluid distribution to reveal the true potential of this offshore brownfield located in the Gulf of Suez, Egypt. An integrated approach and candidate well selection were done that resulted in selecting two candidate wells that had poor cement quality behind casing, heterogeneous carbonate reservoir with mixed lithology, and uncertain fluid contacts in a complex reservoir structure. These combined borehole and reservoir conditions resemble challenges for capturing this crucial information with high confidence using the legacy pulsed neutron tool, and therefore required an advanced technology that can overcome these challenges using a single logging mode at twice the logging speed of any current pulsed neutron technology available in the industry. Based on the results, a workover campaign was implemented in this mature field to increase overall oil production with very efficient cost control, especially with this unprecedented time the O&G industry is going through. An integrated approach was set that resulted in the selection of two wells for the saturation determination logging tool deployment. Detailed high-resolution mineralogy, self-compensated total porosity and sigma, fluid type identification, and multiphase fluid saturation was obtained with high precision behind cased borehole independent of cement integrity and borehole fluid reinvasion. The results provided crucial information as an input to the integrated reservoir engineering approach which revealed around a 100-m net oil interval which was previously overlooked due to relatively low resistivity. Besides, fluids contacts were evaluated that confirmed the development of a secondary gas cap and the water encroachment direction. This technology can be further applied to more brownfields provided the right candidate selection is done to understand the potentiality of the field which would increase the recovery factor of the brownfields that represent almost more than 65% of the oil and gas fields around the world.


2021 ◽  
Author(s):  
Youssry Abd El-Aziz Mohamed ◽  
Mahmoud Mohamed Kheir ◽  
Ayman Abd El-ghany Al-Zahry ◽  
Ayman Salama Salama ◽  
Abdalla Ahmed Ouda ◽  
...  

High Performance Low-Invasion Fluids Technology Enhances, Optimizes Drilling Efficiency in the Gulf of Suez – Egypt Objectives / Scope: The main objective of this paper is to characterize the drilled shale formation in order to select and propose a "tailored" High Performance Low Invasion Fluids (HPLIF) system aided by Bridging Particles Optimization Tool (BPOT)(5),(6)(9)(11), capable of maximize hole stability in pressure depleted sands, allowing optimized well design through reactive and dispersible shale formations(7)(8) that eliminated one casing section, and to replace Oil Base Mud (OBM) and avoid its HSE issues related to use it, consequently, reduce formation damage, eliminate waste management cost, minimizing Non Productive Time (NPT) and finally enhances Drilling performance. Methods, Procedures, Process: This paper explain the reactivity information about Shale Samples recovered from different wells drilled in the-GOS-Egypt followed by extensive laboratory testing done(1) in order to characterize the main clay minerals presented in the samples using X-Ray Diffraction-(XRD) technology and their meso-and micro-structure by Scanning-Electron-Microscope-(SEM) and their reactivity to compare the inhibition efficiency of the proposed-(HPLIF)-System with Blank and Conventional Water-Base-Fluid-System. The reactivity of the cuttings was assessed by Dispersion, Swelling and Hardness tests. Field application experienced (HPLIF) System combined with Well-Bore Strengthening Materials (WSM) gives the required protection against induced losses and reducing the risk of differential sticking problems when mud overbalance is above 2500 psi(5), (6)(9)(11). Results, Observations, Conclusions: Compared with the use of conventional fluid systems, Field data demonstrated the successful application of (HPLIF) System combined with (WSM) and shows a great success during drilling through reactive clays, dispersive shale, naturally micro fractured(8), and depleted sand formations in many wells drilled in the GOS(2), (3), (4). Drilling operations reported no differential sticking, or wellbore instability issues even at highly mud overbalance or at highly deviated wells. The first challenged well R1-63 was drilled about 2391 ft, through 8.5" hole using 9.8-10.01 ppg using (HPLIF) system, penetrating through Thebes, Esna Shale, Sudr, Brown Lime Stone, Matulla, Nubia"A" Sand and Nubia "B" without any down-hole losses. Additionally, there was no sticking tendency experienced during drilling or while recording pressure points. The Non Productive Time NPT showed a reduction by about 19.2%. Finally, it ran and was cemented the "7" Liner in open hole successfully without problem. For the second challenged case well # 2, the Open hole was exposed to (HPLIF) water based mud system for a long period of time while rig repairing, rig switching, and during drilling operation. The well had 6" hole from 12,752 To/14,945 (2193.0ft) through Red bed, Thebes Esna, Sudr, Matulla and Nubia Sand formations with max inclination 68.6° and bottom hole temperature 325°F using 10.0-10.5 ppg (HPLIF) system, the 4.5"liner successfully was ran, cemented without any problems. The-HPLIF-System has also been shown to give excellent wellbore stability in brittle shales Fm where bedding planes or micro-fractures can become pressurized with mud, leading to wellbore instability. This innovation avoids induced lost circulation and differential sticking when the mud overbalance is expected to be greater than ±2500 psi. Additionally, the proposed solution enhances the drilling operation, reduces the waste management costs, eliminates a possible additional casing string, and finally minimizes the (NPT) which reflects on the overall cost of drilling these challenged wells.


2021 ◽  
Author(s):  
Mahmoud Mohamed Koriesh ◽  
Mahmoud Atia Elwan ◽  
Ali ELbasyouni Mousa ◽  
Mahmoud Ibrahim El Shiekh ◽  
Maria Leticia Vazquez ◽  
...  

Abstract Scale deposition is a major concern in Gulf of Suez Fields, variations in water composition and operating conditions resulted in the deposition of full spectrum of scale depositions in different fields. The common practice in GOS is to prevent scale deposition by periodical scale inhibition treatment. However the field experience showed variation in efficiency of inhibition under different operating conditions which results in some cases in scale deposition. In this case we are obliged to react and do intervention to clean out these wells either with chemical dissolution or coiled tubing clean out which is sometimes becomes costly and stand clueless in front of hard scale. Typically, in offshore operating fields, rig-less solutions is the optimum. A simple, innovative, and cost effective Torque action debris breaker tool is a new rig-less solution deployed on slick-line unit. The tool can be run at different sizes to allow for optimum scale removal. Activation is achieved via downward jarring action. The TADB tool applies a new operating concept different from milling. The tool consists of a sharp knife with a broach body. The operating mechanism uses the jarring down action in order to apply jackhammer force on the scale accumulation, which allows decreasing the bond between different layers of scale and between the scale and tubing. Another advantage is having the knife rotating after each jar action, which allows this force to be applied on different positions of scale accumulation adding more efficiency. The tool was first deployed in Egypt in one of the challenging oil wells offshore gulf of suez, which has a historical scale deposition issues "mainly hard deposition of zinc & lead sulfides". several trials were performed to clean out the well historically using coiled tubing operations using barge assist, it took 2 months of operation to achieve partial success & the well was worked over later. The Torque Action debris breaker was tried against the same scale type and found successful. allowing the well to be drifted with 2.7" compared with 2.25" before the job. The operation cost is by no means comparable to the previous cost of coiled tubing operations. Following this wells three other wells were intervened using the same tool and showed much better progress of scale clean out in comparison with other slick-line tools & historical coiled tubing performance in these wells. The implementation of this technology has generally optimized operating cost compared to lengthy and costly CT/WO operation minimizing footprint, equipment, manpower, job duration, and provide a more environmentally friendly solution.


Author(s):  
Ahmed M. Ali ◽  
Ahmed E. Radwan ◽  
Esam A. Abd El-Gawad ◽  
Abdel-Sattar A. Abdel-Latief

AbstractThe Coniacian–Santonian Matulla Formation is one of the important reservoirs in the July oilfield, Gulf of Suez Basin. However, this formation is characterized by uncertainty due to the complexity of reservoir architecture, various lithologies, lateral facies variations and heterogeneous reservoir quality. These reservoir challenges, in turn, affect the effectiveness of further exploitation of this reservoir along the Gulf of Suez Basin. In this work, we conduct an integrated study using multidisciplinary datasets and techniques to determine the precise structural, petrophysical, and facies characteristics of the Matulla Formation and predict their complex geometry in 3D space. To complete this study, 30 2D seismic sections, five digital well logs, and core samples of 75 ft (ft = 0.3048 m) length were used to build 3D models for the Matulla reservoir. The 3D structural model shows strong lateral variation in thickness of the Matulla Formation with NW–SE, NE–SW and N–S fault directions. According to the 3D facies model, shale beds dominate the Matulla Formation, followed by sandstone, carbonate, and siltstone beds. The petrophysical model demonstrates the Matulla reservoir's ability to store and produce oil; its upper and lower zones have good quality reservoir, whereas its middle zone is a poor quality reservoir. The most promising areas for hydrocarbon accumulation and production via the Matulla reservoir are located in the central, southeast, and southwest sectors of the oilfield. In this approach, we combined multiple datasets and used the most likely parameters calibrated by core measurements to improve the reservoir modeling of the complex Matulla reservoir. In addition, we reduced many of the common uncertainties associated with the static modeling process, which can be applied elsewhere to gain better understanding of a complex reservoir.


2021 ◽  
Vol 14 (24) ◽  
Author(s):  
Khaled Gamal Elmaadawy ◽  
Mahmoud Fathy Bayan ◽  
Hassan Mohamed El-Shayeb

Sign in / Sign up

Export Citation Format

Share Document