Consideration of the Effect of Length-Scale Information on Regular to Mach Reflection Transition in the Presence of Dynamic Effects

Author(s):  
K. Naidoo ◽  
B. W. Skews
2021 ◽  
Vol 104 (5) ◽  
Author(s):  
Rohtash Goyal ◽  
A. Sameen ◽  
T. Jayachandran ◽  
G. Rajesh

2002 ◽  
Vol 38 (4-5) ◽  
pp. 347-387 ◽  
Author(s):  
G Ben-Dor ◽  
M Ivanov ◽  
E.I Vasilev ◽  
T Elperin

1995 ◽  
Vol 301 ◽  
pp. 19-35 ◽  
Author(s):  
A. Chpoun ◽  
D. Passerel ◽  
H. Li ◽  
G. Ben-Dor

The reflection of shock waves over straight reflecting surfaces in steady flows was investigated experimentally using the supersonic wind tunnel of Laboratoire d'Aerothermique du CNRS, Meudon, France. The results for a flow Mach number M0 = 4.96 contradict the state of the art regarding the regular [harr ] Mach reflection transition in steady flows. Not only was a hysteresis found to exist in this transition, but, unlike previous reports, regular reflection configurations were found to be stable in the dual-solution domain in which theoretically both regular and Mach reflection are possible.


2018 ◽  
Vol 858 ◽  
pp. 565-587 ◽  
Author(s):  
Divek Surujhlal ◽  
Beric W. Skews

Three-dimensional shock wave reflection comprises flow physics that is significantly different from the well-documented two-dimensional cases in a number of aspects. The most important differentiating factor is the sweep of the shock system. In particular, this work examines the nature of flow fields in which there is a transition of shock reflection configuration in three-dimensional space. The flow fields investigated have been made to exist in the absence of edge effects influencing the shock interaction and transition, as found previously to exist in conventional double-wedge studies. In general, the shock configurations are those with central regular and peripheral Mach reflection portions. It is shown that the sweep angle of the portions on either side of the transition point is subject to a cusp, as per an analytical model that is developed. This is confirmed with the use of numerical models with additional evidence provided by experimental results using oblique shadow photography. Further application of the principles of three-dimensional shock analysis and those pertaining to the sweep cusp model yield important insights regarding the overall shock geometry and that at transition.


1997 ◽  
Vol 9 (10) ◽  
pp. 3096-3098 ◽  
Author(s):  
G. Ben-Dor ◽  
T. Elperin ◽  
H. Li ◽  
E. Vasiliev

AIAA Journal ◽  
1981 ◽  
Vol 19 (9) ◽  
pp. 1238-1240 ◽  
Author(s):  
K. Takayama ◽  
G. Ben-Dor ◽  
J. Gotoh

2002 ◽  
Vol 472 ◽  
pp. 263-282 ◽  
Author(s):  
FILIPE J. BARBOSA ◽  
BERIC W. SKEWS

For many years there has been debate regarding why shock wave reflection off a solid surface has allowed regular reflection to persist beyond the incidence angles where it becomes theoretically impossible. Theory predicts that at some limiting angle the reflection point will move away from the wall and Mach reflection will occur. Previous studies have suggested that the paradox could be due to the presence of the growing viscous boundary layer immediately behind the point of reflection, and some numerical studies support this view. This paper takes the approach of establishing an experimental facility in which the theoretical assumptions regarding the surface of reflection are met, i.e. that the reflecting surface is perfectly smooth, perfectly rigid, and adiabatic. This is done by constructing a bifurcated shock tube facility in which a shock wave is split into two plane waves that are then allowed to reflect off each other at the trailing edge of wedge. The plane of symmetry between the waves then acts as the perfect reflection surface.Through a careful set of visualization experiments, and the use of multivariate analysis to take account of the uncertainty in shock Mach number, triple-point trajectory angle, and slightly different shock wave arrival times at the trailing edge, the current work shows that the transition from one type of reflection to the other does indeed occur at the theoretical value. Conventional tests of reflection off a solid wall show significantly different transition results. Furthermore, it is also shown that the thermal boundary layer plays an important role in this regard. It is thus confirmed that viscous and thermal effects are the reason for the paradox. Reasons are also suggested for the counter-intuitive behaviour of the reflected shock wave angle.


Sign in / Sign up

Export Citation Format

Share Document