scholarly journals Hysteresis processes in the regular reflection↔Mach reflection transition in steady flows

2002 ◽  
Vol 38 (4-5) ◽  
pp. 347-387 ◽  
Author(s):  
G Ben-Dor ◽  
M Ivanov ◽  
E.I Vasilev ◽  
T Elperin
1995 ◽  
Vol 301 ◽  
pp. 19-35 ◽  
Author(s):  
A. Chpoun ◽  
D. Passerel ◽  
H. Li ◽  
G. Ben-Dor

The reflection of shock waves over straight reflecting surfaces in steady flows was investigated experimentally using the supersonic wind tunnel of Laboratoire d'Aerothermique du CNRS, Meudon, France. The results for a flow Mach number M0 = 4.96 contradict the state of the art regarding the regular [harr ] Mach reflection transition in steady flows. Not only was a hysteresis found to exist in this transition, but, unlike previous reports, regular reflection configurations were found to be stable in the dual-solution domain in which theoretically both regular and Mach reflection are possible.


2009 ◽  
Vol 620 ◽  
pp. 43-62 ◽  
Author(s):  
Z. M. HU ◽  
R. S. MYONG ◽  
M. S. KIM ◽  
T. H. CHO

In this paper, the regular reflection (RR) to Mach reflection (MR) transition of asymmetric shock waves is theoretically studied by employing the classical two- and three-shock theories. Computations are conducted to evaluate the effects of expansion fans, which are inherent flow structures in asymmetric reflection of shock waves, on the RR → MR transition. Comparison shows good agreement among the theoretical, numerical and experimental results. Some discrepancies between experiment and theory reported in previous studies are also explained based on the present theoretical analysis. The advanced RR → MR transition triggered by a transverse wave is also discussed for the interaction of a hypersonic flow and a double-wedge-like geometry.


1997 ◽  
Vol 9 (10) ◽  
pp. 3096-3098 ◽  
Author(s):  
G. Ben-Dor ◽  
T. Elperin ◽  
H. Li ◽  
E. Vasiliev

2002 ◽  
Vol 469 ◽  
pp. 71-87 ◽  
Author(s):  
M. S. IVANOV ◽  
G. BEN-DOR ◽  
T. ELPERIN ◽  
A. N. KUDRYAVTSEV ◽  
D. V. KHOTYANOVSKY

The theoretical study and experimental investigation of the reflection of asymmetric shock waves in steady flows reported by Li et al. (1999) are complemented by a numerical simulation. All the findings reported in both the theoretical study and the experimental investigation were also evident in the numerical simulation. In addition to weak regular reflection and Mach reflection wave configurations, strong regular reflection and inverse-Mach reflection wave configurations were recorded numerically. The hysteresis phenomenon, which was hypothesized in the course of the theoretical study and then verified in the experimental investigation, was also observed in the numerical simulation.


AIAA Journal ◽  
1996 ◽  
Vol 34 (10) ◽  
pp. 2196-2198 ◽  
Author(s):  
A. Chpoun ◽  
D. Passerel ◽  
G. Ben-Dor
Keyword(s):  

2008 ◽  
Vol 599 ◽  
pp. 81-110 ◽  
Author(s):  
C. J. WANG ◽  
S. L. XU ◽  
C. M. GUO

Gaseous detonation propagation in a bifurcated tube was experimentally and numerically studied for stoichiometric hydrogen and oxygen mixtures diluted with argon. Pressure detection, smoked foil recording and schlieren visualization were used in the experiments. Numerical simulation was carried out at low initial pressure (8.00kPa), based on the reactive Navier–Stokes equations in conjunction with a detailed chemical reaction model. The results show that the detonation wave is strongly disturbed by the wall geometry of the bifurcated tube and undergoes a successive process of attenuation, failure, re-initiation and the transition from regular reflection to Mach reflection. Detonation failure is attributed to the rarefaction waves from the left-hand corner by decoupling leading shock and reaction zones. Re-initiation is induced by the inert leading shock reflection on the right-hand wall in the vertical branch. The branched wall geometry has only a local effect on the detonation propagation. In the horizontal branch, the disturbed detonation wave recovers to a self-sustaining one earlier than that in the vertical branch. A critical case was found in the experiments where the disturbed detonation wave can be recovered to be self-sustaining downstream of the horizontal branch, but fails in the vertical branch, as the initial pressure drops to 2.00kPa. Numerical simulation also shows that complex vortex structures can be observed during detonation diffraction. The reflected shock breaks the vortices into pieces and its interaction with the unreacted recirculation region induces an embedded jet. In the vertical branch, owing to the strength difference at any point and the effect of chemical reactions, the Mach stem cannot be approximated as an arc. This is different from the case in non-reactive steady flow. Generally, numerical simulation qualitatively reproduces detonation attenuation, failure, re-initiation and the transition from regular reflection to Mach reflection observed in experiments.


Sign in / Sign up

Export Citation Format

Share Document