Energy Saving and Load Balancing for SDN Based on Multi-objective Particle Swarm Optimization

Author(s):  
Runshui Zhu ◽  
Hua Wang ◽  
Yanqing Gao ◽  
Shanwen Yi ◽  
Fangjin Zhu
Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3356
Author(s):  
Mustafa Hasan Albowarab ◽  
Nurul Azma Zakaria ◽  
Zaheera Zainal Abidin

Various aspects of task execution load balancing of Internet of Things (IoTs) networks can be optimised using intelligent algorithms provided by software-defined networking (SDN). These load balancing aspects include makespan, energy consumption, and execution cost. While past studies have evaluated load balancing from one or two aspects, none has explored the possibility of simultaneously optimising all aspects, namely, reliability, energy, cost, and execution time. For the purposes of load balancing, implementing multi-objective optimisation (MOO) based on meta-heuristic searching algorithms requires assurances that the solution space will be thoroughly explored. Optimising load balancing provides not only decision makers with optimised solutions but a rich set of candidate solutions to choose from. Therefore, the purposes of this study were (1) to propose a joint mathematical formulation to solve load balancing challenges in cloud computing and (2) to propose two multi-objective particle swarm optimisation (MP) models; distance angle multi-objective particle swarm optimization (DAMP) and angle multi-objective particle swarm optimization (AMP). Unlike existing models that only use crowding distance as a criterion for solution selection, our MP models probabilistically combine both crowding distance and crowding angle. More specifically, we only selected solutions that had more than a 0.5 probability of higher crowding distance and higher angular distribution. In addition, binary variants of the approaches were generated based on transfer function, and they were denoted by binary DAMP (BDAMP) and binary AMP (BAMP). After using MOO mathematical functions to compare our models, BDAMP and BAMP, with state of the standard models, BMP, BDMP and BPSO, they were tested using the proposed load balancing model. Both tests proved that our DAMP and AMP models were far superior to the state of the art standard models, MP, crowding distance multi-objective particle swarm optimisation (DMP), and PSO. Therefore, this study enables the incorporation of meta-heuristic in the management layer of cloud networks.


Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6212
Author(s):  
Xinying Chen ◽  
Siyi Xiao

An application based on a microservice architecture with a set of independent, fine-grained modular services is desirable, due to its low management cost, simple deployment, and high portability. This type of container technology has been widely used in cloud computing. Several methods have been applied to container-based microservice scheduling, but they come with significant disadvantages, such as high network transmission overhead, ineffective load balancing, and low service reliability. In order to overcome these disadvantages, in this study, we present a multi-objective optimization problem for container-based microservice scheduling. Our approach is based on the particle swarm optimization algorithm, combined parallel computing, and Pareto-optimal theory. The particle swarm optimization algorithm has fast convergence speed, fewer parameters, and many other advantages. First, we detail the various resources of the physical nodes, cluster, local load balancing, failure rate, and other aspects. Then, we discuss our improvement with respect to the relevant parameters. Second, we create a multi-objective optimization model and use a multi-objective optimization parallel particle swarm optimization algorithm for container-based microservice scheduling (MOPPSO-CMS). This algorithm is based on user needs and can effectively balance the performance of the cluster. After comparative experiments, we found that the algorithm can achieve good results, in terms of load balancing, network transmission overhead, and optimization speed.


Sign in / Sign up

Export Citation Format

Share Document