A Diverse Meta Learning Ensemble Technique to Handle Imbalanced Microarray Dataset

Author(s):  
Sujata Dash
Author(s):  
LIOR ROKACH ◽  
ODED MAIMON ◽  
OMRI ARAD

This paper introduces a new ensemble technique, cluster-based concurrent decomposition (CBCD) that induces an ensemble of classifiers by decomposing the training set into mutually exclusive sub-samples of equal-size. The CBCD algorithm first clusters the instance space by using the K-means clustering algorithm. Afterwards it produces disjoint sub-samples using the clusters in such a way that each sub-sample is comprised of tuples from all clusters and hence represents the entire dataset. An induction algorithm is applied in turn to each subset, followed by a voting mechanism that combines the classifier's predictions. The CBCD algorithm has two tuning parameters: the number of clusters and the number of subsets to create. Using a suitable meta-learning it is possible to tune these parameters properly. In the experimental study we conducted, the CBCD algorithm, using an embedded C4.5 algorithm, outperformed the bagging algorithm of the same computational complexity.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 172859-172868
Author(s):  
Zhengwei Ma ◽  
Sensen Guo ◽  
Gang Xu ◽  
Saddam Aziz

Sensors ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 5966
Author(s):  
Ke Wang ◽  
Gong Zhang

The challenge of small data has emerged in synthetic aperture radar automatic target recognition (SAR-ATR) problems. Most SAR-ATR methods are data-driven and require a lot of training data that are expensive to collect. To address this challenge, we propose a recognition model that incorporates meta-learning and amortized variational inference (AVI). Specifically, the model consists of global parameters and task-specific parameters. The global parameters, trained by meta-learning, construct a common feature extractor shared between all recognition tasks. The task-specific parameters, modeled by probability distributions, can adapt to new tasks with a small amount of training data. To reduce the computation and storage cost, the task-specific parameters are inferred by AVI implemented with set-to-set functions. Extensive experiments were conducted on a real SAR dataset to evaluate the effectiveness of the model. The results of the proposed approach compared with those of the latest SAR-ATR methods show the superior performance of our model, especially on recognition tasks with limited data.


Sign in / Sign up

Export Citation Format

Share Document