global parameters
Recently Published Documents


TOTAL DOCUMENTS

154
(FIVE YEARS 43)

H-INDEX

16
(FIVE YEARS 4)

MAUSAM ◽  
2022 ◽  
Vol 44 (2) ◽  
pp. 185-190
Author(s):  
S.S. SINGH ◽  
S.V. DATAR ◽  
H.N. SRIVASTAVA

Interannual variability of Empirical Orthogonal Functions (EOF) based upon regional/global parameters, associated with the summer monsoon rainfall over different meteorological sub-divisions of the country have been discussed, based upon the data during the years 1958 to 1990 enabling us to identify three broad  sub-divisions of the country.   It was interesting to note that the first empirical orthogonal function did not show significant correlation with monsoon rainfall over most SUB-DIVISIONS of the NE and SE parts of the country. However, this EOF was found to be significantly correlated with the rainfall over the remaining meteorological sub-divisions of the country.  


2021 ◽  
Vol 49 (1) ◽  
Author(s):  
Malik Zia Ullah Bashir ◽  
◽  
Rashid Ali ◽  

In this paper, we cryptanalyzed a recently proposed encryption scheme that uses elliptic curves over a finite field. The security of the proposed scheme depends upon the elliptic curve discrete logarithm problem. Two secret keys are used to increase the security strength of the scheme as compared to traditionally used schemes that are based on one secret key. In this scheme, if an adversary gets one secret key then he is unable to get the contents of the original message without the second secret key. Our analysis shows that the proposed scheme is not secure and unable to provide the basic security requirements of the encryption scheme. Due to our successful cryptanalysis, an adversary can get the contents of the original message without the knowledge of the secret keys of the receiver. To mount the attack, Mallory first gets the transmitted ciphertext and then uses public keys of the receiver and global parameters of the scheme to recover the associated plaintext message. To overcome the security flaws, we introduced an improved version of the scheme.


Author(s):  
J R Danielson ◽  
Soumen Ghosh ◽  
clifford surko

Abstract Annihilation studies have established that positrons bind to most molecules. They also provide measurements of the positron-molecule binding energies, which are found to vary widely and depend upon molecular size and composition. Trends of binding energy with global parameters such as molecular polarizability and dipole moment have been discussed previously. In this paper, the dependence of binding energy on molecular geometry is investigated by studying resonant positron annihilation on selected pairs of isomers. It is found that molecular geometry can play a significant role in determining the binding energies even for isomers with very similar polarizabilities and dipole moments. The possible origins of this dependence are discussed.


Author(s):  
Ana López-Varea ◽  
Cristina M Ostalé ◽  
Patricia Vega-Cuesta ◽  
Ana Ruiz-Gómez ◽  
María F Organista ◽  
...  

Abstract We have screened a collection of UAS-RNAi lines targeting 10920 Drosophila protein-coding genes for phenotypes in the adult wing. We identified 3653 genes (33%) whose knock-down causes either larval/pupal lethality or a mutant phenotype affecting the formation of a normal wing. The most frequent phenotypes consist in changes in wing size, vein differentiation and patterning, defects in the wing margin and in the apposition of the dorsal and ventral wing surfaces. We also defined 16 functional categories encompassing the most relevant aspect of each protein function, and assigned each Drosophila gene to one of these functional groups. This allowed us to identify which mutant phenotypes are enriched within each functional group. Finally, we used previously published gene expression datasets to determine which genes are or are not expressed in the wing disc. Integrating expression, phenotypic and molecular information offers considerable precision to identify the relevant genes affecting wing formation and the biological processes regulated by them.


2021 ◽  
pp. 107780042110423
Author(s):  
César Augusto Ferrari Martinez ◽  
Gabriela Rodrigues Gois

In this work, we challenge supposedly neutral imaginaries of what walking methodologies consist of, unveiling social and political dimensions and addressing the production of embodied spaces involved in the act of walking. We adopt the concept of intersectionality to construct an analysis that considers the effects of the colonial, racist, and sexist historical scheme on the production of knowledge. We understand that the current globalization project produces a global subject that is not racialized, and therefore White. And it is marked by gender norms, and therefore, masculine and heterosexual. These characteristics give the person the privilege of moving “naturally,” without the need to justify physical, social, and political corporealities. In the walking research carried out by subjects who deviate from such global parameters, we identified the interruption of walking as an epistemological event that displaces them from the space they are producing. We also analyzed the idea of risk produced to the researchers when they are identified as someone who “does not belong” to that space. We argue that the interaction among gender, race, and place imposes a local condition to the knowledge produced by Afro-Latin American walking researchers. Finally, we defend the walking methodologies as a political statute in the occupation of simultaneously physical and epistemological spaces because the subject’s position and the power relations that are addressed in the act of walking require consideration.


2021 ◽  
Author(s):  
Camille Jeannot ◽  
E. Sadoulet-Reboul ◽  
S. Dufrenoy

Abstract Studying high precision ball bearings requires the development of predictive models. In presence of waviness on the rings, geometrical and also mechanical parameters will vary according to the angular position. To consider these modifications, a nonlinear contact model is proposed with normal and tangential forces calculation using Hertz and Dahl’s models. To solve the static equilibrium of the bearing, a highly modular energy method is developed. It allows the determination of both local and global parameters using the same equation. The 2D developed approach can be used to study different waviness orders and magnitudes to get a better understanding on how this affects the bearing behavior (contact load, balls gaping, pointing defects...). The presented results show that even small contact direction reorientation can create tangential forces. This modifies the bearing deflections and induces a residual moment. These phenomena can only be observed when the contact is accurately modeled.


2021 ◽  
Vol 3 ◽  
Author(s):  
Sara Bridio ◽  
Giulia Luraghi ◽  
Jose F. Rodriguez Matas ◽  
Gabriele Dubini ◽  
Giorgia G. Giassi ◽  
...  

The aim of this work is to propose a methodology for identifying relationships between morphological features of the cerebral vasculature and the outcome of in silico simulations of thrombectomy, the mechanical treatment for acute ischemic stroke. Fourteen patient-specific cerebral vasculature segmentations were collected and used for geometric characterization of the intracranial arteries mostly affected by large vessel occlusions, i.e., internal carotid artery (ICA), middle cerebral artery (MCA) and anterior cerebral artery (ACA). First, a set of global parameters was created, including the geometrical information commonly provided in the clinical context, namely the total length, the average diameter and the tortuosity (length over head-tail distance) of the intracranial ICA. Then, a more exhaustive geometrical analysis was performed to collect a set of local parameters. A total of 27 parameters was measured from each patient-specific vascular configuration. Fourteen virtual thrombectomy simulations were performed with a blood clot with the same length and composition placed in the middle of the MCA. The model of TREVO ProVue stent-retriever was used for all the simulations. Results from simulations produced five unsuccessful outcomes, i.e., the clot was not removed from the vessels. The geometric parameters of the successful and unsuccessful simulations were compared to find relations between the vascular geometry and the outcome. None of the global parameters alone or combined proved able to discriminate between positive and negative outcome, while a combination of local parameters allowed to correctly identify the successful from the unsuccessful simulations. Although these results are limited by the number of patients considered, this study indicates a promising methodology to relate patient-specific geometry to virtual thrombectomy outcome, which might eventually guide decision making in the treatment of acute ischemic stroke.


Author(s):  
Duong Viet Thong ◽  
Aviv Gibali ◽  
Mathias Staudigl ◽  
Phan Tu Vuong

AbstractDynamic user equilibrium (DUE) is a Nash-like solution concept describing an equilibrium in dynamic traffic systems over a fixed planning period. DUE is a challenging class of equilibrium problems, connecting network loading models and notions of system equilibrium in one concise mathematical framework. Recently, Friesz and Han introduced an integrated framework for DUE computation on large-scale networks, featuring a basic fixed-point algorithm for the effective computation of DUE. In the same work, they present an open-source MATLAB toolbox which allows researchers to test and validate new numerical solvers. This paper builds on this seminal contribution, and extends it in several important ways. At a conceptual level, we provide new strongly convergent algorithms designed to compute a DUE directly in the infinite-dimensional space of path flows. An important feature of our algorithms is that they give provable convergence guarantees without knowledge of global parameters. In fact, the algorithms we propose are adaptive, in the sense that they do not need a priori knowledge of global parameters of the delay operator, and which are provable convergent even for delay operators which are non-monotone. We implement our numerical schemes on standard test instances, and compare them with the numerical solution strategy employed by Friesz and Han.


Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 477
Author(s):  
Marek Mozrzymas ◽  
Michał Studziński ◽  
Piotr Kopszak

In this paper, we introduce optimal versions of a multi-port based teleportation scheme allowing to send a large amount of quantum information. We fully characterise probabilistic and deterministic case by presenting expressions for the average probability of success and entanglement fidelity. In the probabilistic case, the final expression depends only on global parameters describing the problem, such as the number of ports N, the number of teleported systems k, and local dimension d. It allows us to show square improvement in the number of ports with respect to the non-optimal case. We also show that the number of teleported systems can grow when the number N of ports increases as o(N) still giving high efficiency. In the deterministic case, we connect entanglement fidelity with the maximal eigenvalue of a generalised teleportation matrix. In both cases the optimal set of measurements and the optimal state shared between sender and receiver is presented. All the results are obtained by formulating and solving primal and dual SDP problems, which due to existing symmetries can be solved analytically. We use extensively tools from representation theory and formulate new results that could be of the separate interest for the potential readers.


Lubricants ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 62
Author(s):  
Bachir Bouchehit ◽  
Benyebka Bou-Saïd ◽  
John Tichy

Hydrogen is the cleanest fuel available because its combustion product is water. The internal combustion engine can, in principle and without significant modifications, run on hydrogen to produce mechanical energy. Regarding the technological solution leading to compact engines, a question to ask is the following: Can combustion engine systems be lubricated with hydrogen? In general, since many applications such as in turbomachines, is it possible to use the surrounding gas as a lubricant? In this paper, journal bearings global parameters are calculated and compared for steady state and dynamic conditions for different gas constituents such as air, pentafluoropropane, helium and hydrogen. Such a bearing may be promising as an ecological alternative to liquid lubrication.


Sign in / Sign up

Export Citation Format

Share Document